Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem-ddly Structured version   Visualization version   GIF version

Theorem dalem-ddly 35762
Description: Lemma for dath 35812. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.)
Hypothesis
Ref Expression
da.ps0 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
Assertion
Ref Expression
dalem-ddly (𝜓 → ¬ 𝑑 𝑌)

Proof of Theorem dalem-ddly
StepHypRef Expression
1 da.ps0 . 2 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
2 simp32 1273 . 2 (((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) → ¬ 𝑑 𝑌)
31, 2sylbi 209 1 (𝜓 → ¬ 𝑑 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1113  wcel 2166  wne 3000   class class class wbr 4874  (class class class)co 6906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-3an 1115
This theorem is referenced by:  dalemswapyzps  35766  dalemrotps  35767  dalem23  35772  dalem24  35773  dalem25  35774
  Copyright terms: Public domain W3C validator