Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem25 Structured version   Visualization version   GIF version

Theorem dalem25 36828
Description: Lemma for dath 36866. Show that the dummy center of perspectivity 𝑐 is different from auxiliary atom 𝐺. (Contributed by NM, 3-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem23.m = (meet‘𝐾)
dalem23.o 𝑂 = (LPlanes‘𝐾)
dalem23.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem23.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem23.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
Assertion
Ref Expression
dalem25 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐺)

Proof of Theorem dalem25
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . 4 = (le‘𝐾)
3 dalem.j . . . 4 = (join‘𝐾)
4 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4dalemcnes 36780 . . 3 (𝜑𝐶𝑆)
653ad2ant1 1129 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐶𝑆)
7 dalem.ps . . . . . . . . . . 11 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
87dalemclccjdd 36818 . . . . . . . . . 10 (𝜓𝐶 (𝑐 𝑑))
983ad2ant3 1131 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 (𝑐 𝑑))
109adantr 483 . . . . . . . 8 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐶 (𝑐 𝑑))
11 simpr 487 . . . . . . . . . 10 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝑐 = 𝐺)
12 dalem23.g . . . . . . . . . . . . 13 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
131dalemkelat 36754 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ Lat)
14133ad2ant1 1129 . . . . . . . . . . . . . 14 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
151dalemkehl 36753 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ HL)
16153ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
177dalemccea 36813 . . . . . . . . . . . . . . . 16 (𝜓𝑐𝐴)
18173ad2ant3 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
191dalempea 36756 . . . . . . . . . . . . . . . 16 (𝜑𝑃𝐴)
20193ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝑃𝐴)
21 eqid 2821 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
2221, 3, 4hlatjcl 36497 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) → (𝑐 𝑃) ∈ (Base‘𝐾))
2316, 18, 20, 22syl3anc 1367 . . . . . . . . . . . . . 14 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) ∈ (Base‘𝐾))
247dalemddea 36814 . . . . . . . . . . . . . . . 16 (𝜓𝑑𝐴)
25243ad2ant3 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
261dalemsea 36759 . . . . . . . . . . . . . . . 16 (𝜑𝑆𝐴)
27263ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝐴)
2821, 3, 4hlatjcl 36497 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) ∈ (Base‘𝐾))
2916, 25, 27, 28syl3anc 1367 . . . . . . . . . . . . . 14 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) ∈ (Base‘𝐾))
30 dalem23.m . . . . . . . . . . . . . . 15 = (meet‘𝐾)
3121, 2, 30latmle2 17681 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑐 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 𝑆) ∈ (Base‘𝐾)) → ((𝑐 𝑃) (𝑑 𝑆)) (𝑑 𝑆))
3214, 23, 29, 31syl3anc 1367 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) (𝑑 𝑆))
3312, 32eqbrtrid 5093 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 (𝑑 𝑆))
343, 4hlatjcom 36498 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) = (𝑆 𝑑))
3516, 25, 27, 34syl3anc 1367 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) = (𝑆 𝑑))
3633, 35breqtrd 5084 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 (𝑆 𝑑))
3736adantr 483 . . . . . . . . . 10 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐺 (𝑆 𝑑))
3811, 37eqbrtrd 5080 . . . . . . . . 9 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝑐 (𝑆 𝑑))
392, 3, 4hlatlej2 36506 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑑𝐴) → 𝑑 (𝑆 𝑑))
4016, 27, 25, 39syl3anc 1367 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝑑 (𝑆 𝑑))
4140adantr 483 . . . . . . . . 9 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝑑 (𝑆 𝑑))
427, 4dalemcceb 36819 . . . . . . . . . . . 12 (𝜓𝑐 ∈ (Base‘𝐾))
43423ad2ant3 1131 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
4421, 4atbase 36419 . . . . . . . . . . . . 13 (𝑑𝐴𝑑 ∈ (Base‘𝐾))
4524, 44syl 17 . . . . . . . . . . . 12 (𝜓𝑑 ∈ (Base‘𝐾))
46453ad2ant3 1131 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑑 ∈ (Base‘𝐾))
4721, 3, 4hlatjcl 36497 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑑𝐴) → (𝑆 𝑑) ∈ (Base‘𝐾))
4816, 27, 25, 47syl3anc 1367 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → (𝑆 𝑑) ∈ (Base‘𝐾))
4921, 2, 3latjle12 17666 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ 𝑑 ∈ (Base‘𝐾) ∧ (𝑆 𝑑) ∈ (Base‘𝐾))) → ((𝑐 (𝑆 𝑑) ∧ 𝑑 (𝑆 𝑑)) ↔ (𝑐 𝑑) (𝑆 𝑑)))
5014, 43, 46, 48, 49syl13anc 1368 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 (𝑆 𝑑) ∧ 𝑑 (𝑆 𝑑)) ↔ (𝑐 𝑑) (𝑆 𝑑)))
5150adantr 483 . . . . . . . . 9 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → ((𝑐 (𝑆 𝑑) ∧ 𝑑 (𝑆 𝑑)) ↔ (𝑐 𝑑) (𝑆 𝑑)))
5238, 41, 51mpbi2and 710 . . . . . . . 8 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝑐 𝑑) (𝑆 𝑑))
531, 4dalemceb 36768 . . . . . . . . . . 11 (𝜑𝐶 ∈ (Base‘𝐾))
54533ad2ant1 1129 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 ∈ (Base‘𝐾))
5521, 3, 4hlatjcl 36497 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑑𝐴) → (𝑐 𝑑) ∈ (Base‘𝐾))
5616, 18, 25, 55syl3anc 1367 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑑) ∈ (Base‘𝐾))
5721, 2lattr 17660 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ (𝑆 𝑑) ∈ (Base‘𝐾))) → ((𝐶 (𝑐 𝑑) ∧ (𝑐 𝑑) (𝑆 𝑑)) → 𝐶 (𝑆 𝑑)))
5814, 54, 56, 48, 57syl13anc 1368 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → ((𝐶 (𝑐 𝑑) ∧ (𝑐 𝑑) (𝑆 𝑑)) → 𝐶 (𝑆 𝑑)))
5958adantr 483 . . . . . . . 8 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → ((𝐶 (𝑐 𝑑) ∧ (𝑐 𝑑) (𝑆 𝑑)) → 𝐶 (𝑆 𝑑)))
6010, 52, 59mp2and 697 . . . . . . 7 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐶 (𝑆 𝑑))
61 dalem23.o . . . . . . . . . . 11 𝑂 = (LPlanes‘𝐾)
621, 61dalemyeb 36779 . . . . . . . . . 10 (𝜑𝑌 ∈ (Base‘𝐾))
63623ad2ant1 1129 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ∈ (Base‘𝐾))
6421, 2, 30latmlem1 17685 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑆 𝑑) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → (𝐶 (𝑆 𝑑) → (𝐶 𝑌) ((𝑆 𝑑) 𝑌)))
6514, 54, 48, 63, 64syl13anc 1368 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝐶 (𝑆 𝑑) → (𝐶 𝑌) ((𝑆 𝑑) 𝑌)))
6665adantr 483 . . . . . . 7 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝐶 (𝑆 𝑑) → (𝐶 𝑌) ((𝑆 𝑑) 𝑌)))
6760, 66mpd 15 . . . . . 6 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝐶 𝑌) ((𝑆 𝑑) 𝑌))
68 dalem23.y . . . . . . . . . 10 𝑌 = ((𝑃 𝑄) 𝑅)
69 dalem23.z . . . . . . . . . 10 𝑍 = ((𝑆 𝑇) 𝑈)
701, 2, 3, 4, 61, 68, 69dalem17 36810 . . . . . . . . 9 ((𝜑𝑌 = 𝑍) → 𝐶 𝑌)
71703adant3 1128 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 𝑌)
7221, 2, 30latleeqm1 17683 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝐶))
7314, 54, 63, 72syl3anc 1367 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝐶))
7471, 73mpbid 234 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐶 𝑌) = 𝐶)
7574adantr 483 . . . . . 6 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝐶 𝑌) = 𝐶)
761, 2, 3, 4, 69dalemsly 36785 . . . . . . . . 9 ((𝜑𝑌 = 𝑍) → 𝑆 𝑌)
77763adant3 1128 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝑆 𝑌)
787dalem-ddly 36816 . . . . . . . . 9 (𝜓 → ¬ 𝑑 𝑌)
79783ad2ant3 1131 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑌)
8021, 2, 3, 30, 42atjm 36575 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑑𝐴𝑌 ∈ (Base‘𝐾)) ∧ (𝑆 𝑌 ∧ ¬ 𝑑 𝑌)) → ((𝑆 𝑑) 𝑌) = 𝑆)
8116, 27, 25, 63, 77, 79, 80syl132anc 1384 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝑆 𝑑) 𝑌) = 𝑆)
8281adantr 483 . . . . . 6 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → ((𝑆 𝑑) 𝑌) = 𝑆)
8367, 75, 823brtr3d 5089 . . . . 5 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐶 𝑆)
84 hlatl 36490 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
8515, 84syl 17 . . . . . . . 8 (𝜑𝐾 ∈ AtLat)
861, 2, 3, 4, 61, 68dalemcea 36790 . . . . . . . 8 (𝜑𝐶𝐴)
872, 4atcmp 36441 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝐶𝐴𝑆𝐴) → (𝐶 𝑆𝐶 = 𝑆))
8885, 86, 26, 87syl3anc 1367 . . . . . . 7 (𝜑 → (𝐶 𝑆𝐶 = 𝑆))
89883ad2ant1 1129 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝐶 𝑆𝐶 = 𝑆))
9089adantr 483 . . . . 5 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝐶 𝑆𝐶 = 𝑆))
9183, 90mpbid 234 . . . 4 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐶 = 𝑆)
9291ex 415 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 = 𝐺𝐶 = 𝑆))
9392necon3d 3037 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐶𝑆𝑐𝐺))
946, 93mpd 15 1 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5058  cfv 6349  (class class class)co 7150  Basecbs 16477  lecple 16566  joincjn 17548  meetcmee 17549  Latclat 17649  Atomscatm 36393  AtLatcal 36394  HLchlt 36480  LPlanesclpl 36622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-lat 17650  df-clat 17712  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-llines 36628  df-lplanes 36629
This theorem is referenced by:  dalem28  36830  dalem31N  36833
  Copyright terms: Public domain W3C validator