Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem25 Structured version   Visualization version   GIF version

Theorem dalem25 36994
Description: Lemma for dath 37032. Show that the dummy center of perspectivity 𝑐 is different from auxiliary atom 𝐺. (Contributed by NM, 3-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem23.m = (meet‘𝐾)
dalem23.o 𝑂 = (LPlanes‘𝐾)
dalem23.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem23.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem23.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
Assertion
Ref Expression
dalem25 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐺)

Proof of Theorem dalem25
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . 4 = (le‘𝐾)
3 dalem.j . . . 4 = (join‘𝐾)
4 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4dalemcnes 36946 . . 3 (𝜑𝐶𝑆)
653ad2ant1 1130 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐶𝑆)
7 dalem.ps . . . . . . . . . . 11 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
87dalemclccjdd 36984 . . . . . . . . . 10 (𝜓𝐶 (𝑐 𝑑))
983ad2ant3 1132 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 (𝑐 𝑑))
109adantr 484 . . . . . . . 8 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐶 (𝑐 𝑑))
11 simpr 488 . . . . . . . . . 10 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝑐 = 𝐺)
12 dalem23.g . . . . . . . . . . . . 13 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
131dalemkelat 36920 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ Lat)
14133ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
151dalemkehl 36919 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ HL)
16153ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
177dalemccea 36979 . . . . . . . . . . . . . . . 16 (𝜓𝑐𝐴)
18173ad2ant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
191dalempea 36922 . . . . . . . . . . . . . . . 16 (𝜑𝑃𝐴)
20193ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝑃𝐴)
21 eqid 2798 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
2221, 3, 4hlatjcl 36663 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) → (𝑐 𝑃) ∈ (Base‘𝐾))
2316, 18, 20, 22syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) ∈ (Base‘𝐾))
247dalemddea 36980 . . . . . . . . . . . . . . . 16 (𝜓𝑑𝐴)
25243ad2ant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
261dalemsea 36925 . . . . . . . . . . . . . . . 16 (𝜑𝑆𝐴)
27263ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝐴)
2821, 3, 4hlatjcl 36663 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) ∈ (Base‘𝐾))
2916, 25, 27, 28syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) ∈ (Base‘𝐾))
30 dalem23.m . . . . . . . . . . . . . . 15 = (meet‘𝐾)
3121, 2, 30latmle2 17679 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑐 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 𝑆) ∈ (Base‘𝐾)) → ((𝑐 𝑃) (𝑑 𝑆)) (𝑑 𝑆))
3214, 23, 29, 31syl3anc 1368 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) (𝑑 𝑆))
3312, 32eqbrtrid 5065 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 (𝑑 𝑆))
343, 4hlatjcom 36664 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) = (𝑆 𝑑))
3516, 25, 27, 34syl3anc 1368 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) = (𝑆 𝑑))
3633, 35breqtrd 5056 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 (𝑆 𝑑))
3736adantr 484 . . . . . . . . . 10 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐺 (𝑆 𝑑))
3811, 37eqbrtrd 5052 . . . . . . . . 9 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝑐 (𝑆 𝑑))
392, 3, 4hlatlej2 36672 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑑𝐴) → 𝑑 (𝑆 𝑑))
4016, 27, 25, 39syl3anc 1368 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝑑 (𝑆 𝑑))
4140adantr 484 . . . . . . . . 9 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝑑 (𝑆 𝑑))
427, 4dalemcceb 36985 . . . . . . . . . . . 12 (𝜓𝑐 ∈ (Base‘𝐾))
43423ad2ant3 1132 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
4421, 4atbase 36585 . . . . . . . . . . . . 13 (𝑑𝐴𝑑 ∈ (Base‘𝐾))
4524, 44syl 17 . . . . . . . . . . . 12 (𝜓𝑑 ∈ (Base‘𝐾))
46453ad2ant3 1132 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑑 ∈ (Base‘𝐾))
4721, 3, 4hlatjcl 36663 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑑𝐴) → (𝑆 𝑑) ∈ (Base‘𝐾))
4816, 27, 25, 47syl3anc 1368 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → (𝑆 𝑑) ∈ (Base‘𝐾))
4921, 2, 3latjle12 17664 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ 𝑑 ∈ (Base‘𝐾) ∧ (𝑆 𝑑) ∈ (Base‘𝐾))) → ((𝑐 (𝑆 𝑑) ∧ 𝑑 (𝑆 𝑑)) ↔ (𝑐 𝑑) (𝑆 𝑑)))
5014, 43, 46, 48, 49syl13anc 1369 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 (𝑆 𝑑) ∧ 𝑑 (𝑆 𝑑)) ↔ (𝑐 𝑑) (𝑆 𝑑)))
5150adantr 484 . . . . . . . . 9 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → ((𝑐 (𝑆 𝑑) ∧ 𝑑 (𝑆 𝑑)) ↔ (𝑐 𝑑) (𝑆 𝑑)))
5238, 41, 51mpbi2and 711 . . . . . . . 8 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝑐 𝑑) (𝑆 𝑑))
531, 4dalemceb 36934 . . . . . . . . . . 11 (𝜑𝐶 ∈ (Base‘𝐾))
54533ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 ∈ (Base‘𝐾))
5521, 3, 4hlatjcl 36663 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑑𝐴) → (𝑐 𝑑) ∈ (Base‘𝐾))
5616, 18, 25, 55syl3anc 1368 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑑) ∈ (Base‘𝐾))
5721, 2lattr 17658 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ (𝑆 𝑑) ∈ (Base‘𝐾))) → ((𝐶 (𝑐 𝑑) ∧ (𝑐 𝑑) (𝑆 𝑑)) → 𝐶 (𝑆 𝑑)))
5814, 54, 56, 48, 57syl13anc 1369 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → ((𝐶 (𝑐 𝑑) ∧ (𝑐 𝑑) (𝑆 𝑑)) → 𝐶 (𝑆 𝑑)))
5958adantr 484 . . . . . . . 8 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → ((𝐶 (𝑐 𝑑) ∧ (𝑐 𝑑) (𝑆 𝑑)) → 𝐶 (𝑆 𝑑)))
6010, 52, 59mp2and 698 . . . . . . 7 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐶 (𝑆 𝑑))
61 dalem23.o . . . . . . . . . . 11 𝑂 = (LPlanes‘𝐾)
621, 61dalemyeb 36945 . . . . . . . . . 10 (𝜑𝑌 ∈ (Base‘𝐾))
63623ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ∈ (Base‘𝐾))
6421, 2, 30latmlem1 17683 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑆 𝑑) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → (𝐶 (𝑆 𝑑) → (𝐶 𝑌) ((𝑆 𝑑) 𝑌)))
6514, 54, 48, 63, 64syl13anc 1369 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝐶 (𝑆 𝑑) → (𝐶 𝑌) ((𝑆 𝑑) 𝑌)))
6665adantr 484 . . . . . . 7 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝐶 (𝑆 𝑑) → (𝐶 𝑌) ((𝑆 𝑑) 𝑌)))
6760, 66mpd 15 . . . . . 6 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝐶 𝑌) ((𝑆 𝑑) 𝑌))
68 dalem23.y . . . . . . . . . 10 𝑌 = ((𝑃 𝑄) 𝑅)
69 dalem23.z . . . . . . . . . 10 𝑍 = ((𝑆 𝑇) 𝑈)
701, 2, 3, 4, 61, 68, 69dalem17 36976 . . . . . . . . 9 ((𝜑𝑌 = 𝑍) → 𝐶 𝑌)
71703adant3 1129 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 𝑌)
7221, 2, 30latleeqm1 17681 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝐶))
7314, 54, 63, 72syl3anc 1368 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝐶))
7471, 73mpbid 235 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐶 𝑌) = 𝐶)
7574adantr 484 . . . . . 6 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝐶 𝑌) = 𝐶)
761, 2, 3, 4, 69dalemsly 36951 . . . . . . . . 9 ((𝜑𝑌 = 𝑍) → 𝑆 𝑌)
77763adant3 1129 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝑆 𝑌)
787dalem-ddly 36982 . . . . . . . . 9 (𝜓 → ¬ 𝑑 𝑌)
79783ad2ant3 1132 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑌)
8021, 2, 3, 30, 42atjm 36741 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑑𝐴𝑌 ∈ (Base‘𝐾)) ∧ (𝑆 𝑌 ∧ ¬ 𝑑 𝑌)) → ((𝑆 𝑑) 𝑌) = 𝑆)
8116, 27, 25, 63, 77, 79, 80syl132anc 1385 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝑆 𝑑) 𝑌) = 𝑆)
8281adantr 484 . . . . . 6 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → ((𝑆 𝑑) 𝑌) = 𝑆)
8367, 75, 823brtr3d 5061 . . . . 5 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐶 𝑆)
84 hlatl 36656 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
8515, 84syl 17 . . . . . . . 8 (𝜑𝐾 ∈ AtLat)
861, 2, 3, 4, 61, 68dalemcea 36956 . . . . . . . 8 (𝜑𝐶𝐴)
872, 4atcmp 36607 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝐶𝐴𝑆𝐴) → (𝐶 𝑆𝐶 = 𝑆))
8885, 86, 26, 87syl3anc 1368 . . . . . . 7 (𝜑 → (𝐶 𝑆𝐶 = 𝑆))
89883ad2ant1 1130 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝐶 𝑆𝐶 = 𝑆))
9089adantr 484 . . . . 5 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝐶 𝑆𝐶 = 𝑆))
9183, 90mpbid 235 . . . 4 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐶 = 𝑆)
9291ex 416 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 = 𝐺𝐶 = 𝑆))
9392necon3d 3008 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐶𝑆𝑐𝐺))
946, 93mpd 15 1 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  Latclat 17647  Atomscatm 36559  AtLatcal 36560  HLchlt 36646  LPlanesclpl 36788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795
This theorem is referenced by:  dalem28  36996  dalem31N  36999
  Copyright terms: Public domain W3C validator