Proof of Theorem dalem25
Step | Hyp | Ref
| Expression |
1 | | dalem.ph |
. . . 4
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
2 | | dalem.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
3 | | dalem.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
4 | | dalem.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
5 | 1, 2, 3, 4 | dalemcnes 37664 |
. . 3
⊢ (𝜑 → 𝐶 ≠ 𝑆) |
6 | 5 | 3ad2ant1 1132 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐶 ≠ 𝑆) |
7 | | dalem.ps |
. . . . . . . . . . 11
⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
8 | 7 | dalemclccjdd 37702 |
. . . . . . . . . 10
⊢ (𝜓 → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
9 | 8 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
10 | 9 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
11 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → 𝑐 = 𝐺) |
12 | | dalem23.g |
. . . . . . . . . . . . 13
⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
13 | 1 | dalemkelat 37638 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ Lat) |
14 | 13 | 3ad2ant1 1132 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ Lat) |
15 | 1 | dalemkehl 37637 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ HL) |
16 | 15 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
17 | 7 | dalemccea 37697 |
. . . . . . . . . . . . . . . 16
⊢ (𝜓 → 𝑐 ∈ 𝐴) |
18 | 17 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ∈ 𝐴) |
19 | 1 | dalempea 37640 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
20 | 19 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑃 ∈ 𝐴) |
21 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐾) =
(Base‘𝐾) |
22 | 21, 3, 4 | hlatjcl 37381 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑐 ∨ 𝑃) ∈ (Base‘𝐾)) |
23 | 16, 18, 20, 22 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ∨ 𝑃) ∈ (Base‘𝐾)) |
24 | 7 | dalemddea 37698 |
. . . . . . . . . . . . . . . 16
⊢ (𝜓 → 𝑑 ∈ 𝐴) |
25 | 24 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑑 ∈ 𝐴) |
26 | 1 | dalemsea 37643 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑆 ∈ 𝐴) |
27 | 26 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑆 ∈ 𝐴) |
28 | 21, 3, 4 | hlatjcl 37381 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑑 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) |
29 | 16, 25, 27, 28 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) |
30 | | dalem23.m |
. . . . . . . . . . . . . . 15
⊢ ∧ =
(meet‘𝐾) |
31 | 21, 2, 30 | latmle2 18183 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ (𝑐 ∨ 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) ≤ (𝑑 ∨ 𝑆)) |
32 | 14, 23, 29, 31 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) ≤ (𝑑 ∨ 𝑆)) |
33 | 12, 32 | eqbrtrid 5109 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ≤ (𝑑 ∨ 𝑆)) |
34 | 3, 4 | hlatjcom 37382 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑑 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑑 ∨ 𝑆) = (𝑆 ∨ 𝑑)) |
35 | 16, 25, 27, 34 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑑 ∨ 𝑆) = (𝑆 ∨ 𝑑)) |
36 | 33, 35 | breqtrd 5100 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ≤ (𝑆 ∨ 𝑑)) |
37 | 36 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → 𝐺 ≤ (𝑆 ∨ 𝑑)) |
38 | 11, 37 | eqbrtrd 5096 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → 𝑐 ≤ (𝑆 ∨ 𝑑)) |
39 | 2, 3, 4 | hlatlej2 37390 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) → 𝑑 ≤ (𝑆 ∨ 𝑑)) |
40 | 16, 27, 25, 39 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑑 ≤ (𝑆 ∨ 𝑑)) |
41 | 40 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → 𝑑 ≤ (𝑆 ∨ 𝑑)) |
42 | 7, 4 | dalemcceb 37703 |
. . . . . . . . . . . 12
⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
43 | 42 | 3ad2ant3 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ∈ (Base‘𝐾)) |
44 | 21, 4 | atbase 37303 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ 𝐴 → 𝑑 ∈ (Base‘𝐾)) |
45 | 24, 44 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜓 → 𝑑 ∈ (Base‘𝐾)) |
46 | 45 | 3ad2ant3 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑑 ∈ (Base‘𝐾)) |
47 | 21, 3, 4 | hlatjcl 37381 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) → (𝑆 ∨ 𝑑) ∈ (Base‘𝐾)) |
48 | 16, 27, 25, 47 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑆 ∨ 𝑑) ∈ (Base‘𝐾)) |
49 | 21, 2, 3 | latjle12 18168 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ 𝑑 ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑑) ∈ (Base‘𝐾))) → ((𝑐 ≤ (𝑆 ∨ 𝑑) ∧ 𝑑 ≤ (𝑆 ∨ 𝑑)) ↔ (𝑐 ∨ 𝑑) ≤ (𝑆 ∨ 𝑑))) |
50 | 14, 43, 46, 48, 49 | syl13anc 1371 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑐 ≤ (𝑆 ∨ 𝑑) ∧ 𝑑 ≤ (𝑆 ∨ 𝑑)) ↔ (𝑐 ∨ 𝑑) ≤ (𝑆 ∨ 𝑑))) |
51 | 50 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → ((𝑐 ≤ (𝑆 ∨ 𝑑) ∧ 𝑑 ≤ (𝑆 ∨ 𝑑)) ↔ (𝑐 ∨ 𝑑) ≤ (𝑆 ∨ 𝑑))) |
52 | 38, 41, 51 | mpbi2and 709 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → (𝑐 ∨ 𝑑) ≤ (𝑆 ∨ 𝑑)) |
53 | 1, 4 | dalemceb 37652 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ (Base‘𝐾)) |
54 | 53 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐶 ∈ (Base‘𝐾)) |
55 | 21, 3, 4 | hlatjcl 37381 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) → (𝑐 ∨ 𝑑) ∈ (Base‘𝐾)) |
56 | 16, 18, 25, 55 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ∨ 𝑑) ∈ (Base‘𝐾)) |
57 | 21, 2 | lattr 18162 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑐 ∨ 𝑑) ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑑) ∈ (Base‘𝐾))) → ((𝐶 ≤ (𝑐 ∨ 𝑑) ∧ (𝑐 ∨ 𝑑) ≤ (𝑆 ∨ 𝑑)) → 𝐶 ≤ (𝑆 ∨ 𝑑))) |
58 | 14, 54, 56, 48, 57 | syl13anc 1371 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐶 ≤ (𝑐 ∨ 𝑑) ∧ (𝑐 ∨ 𝑑) ≤ (𝑆 ∨ 𝑑)) → 𝐶 ≤ (𝑆 ∨ 𝑑))) |
59 | 58 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → ((𝐶 ≤ (𝑐 ∨ 𝑑) ∧ (𝑐 ∨ 𝑑) ≤ (𝑆 ∨ 𝑑)) → 𝐶 ≤ (𝑆 ∨ 𝑑))) |
60 | 10, 52, 59 | mp2and 696 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → 𝐶 ≤ (𝑆 ∨ 𝑑)) |
61 | | dalem23.o |
. . . . . . . . . . 11
⊢ 𝑂 = (LPlanes‘𝐾) |
62 | 1, 61 | dalemyeb 37663 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐾)) |
63 | 62 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑌 ∈ (Base‘𝐾)) |
64 | 21, 2, 30 | latmlem1 18187 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑑) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → (𝐶 ≤ (𝑆 ∨ 𝑑) → (𝐶 ∧ 𝑌) ≤ ((𝑆 ∨ 𝑑) ∧ 𝑌))) |
65 | 14, 54, 48, 63, 64 | syl13anc 1371 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐶 ≤ (𝑆 ∨ 𝑑) → (𝐶 ∧ 𝑌) ≤ ((𝑆 ∨ 𝑑) ∧ 𝑌))) |
66 | 65 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → (𝐶 ≤ (𝑆 ∨ 𝑑) → (𝐶 ∧ 𝑌) ≤ ((𝑆 ∨ 𝑑) ∧ 𝑌))) |
67 | 60, 66 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → (𝐶 ∧ 𝑌) ≤ ((𝑆 ∨ 𝑑) ∧ 𝑌)) |
68 | | dalem23.y |
. . . . . . . . . 10
⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
69 | | dalem23.z |
. . . . . . . . . 10
⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
70 | 1, 2, 3, 4, 61, 68, 69 | dalem17 37694 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝐶 ≤ 𝑌) |
71 | 70 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐶 ≤ 𝑌) |
72 | 21, 2, 30 | latleeqm1 18185 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝐶 ≤ 𝑌 ↔ (𝐶 ∧ 𝑌) = 𝐶)) |
73 | 14, 54, 63, 72 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐶 ≤ 𝑌 ↔ (𝐶 ∧ 𝑌) = 𝐶)) |
74 | 71, 73 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐶 ∧ 𝑌) = 𝐶) |
75 | 74 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → (𝐶 ∧ 𝑌) = 𝐶) |
76 | 1, 2, 3, 4, 69 | dalemsly 37669 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝑆 ≤ 𝑌) |
77 | 76 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑆 ≤ 𝑌) |
78 | 7 | dalem-ddly 37700 |
. . . . . . . . 9
⊢ (𝜓 → ¬ 𝑑 ≤ 𝑌) |
79 | 78 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑑 ≤ 𝑌) |
80 | 21, 2, 3, 30, 4 | 2atjm 37459 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑆 ≤ 𝑌 ∧ ¬ 𝑑 ≤ 𝑌)) → ((𝑆 ∨ 𝑑) ∧ 𝑌) = 𝑆) |
81 | 16, 27, 25, 63, 77, 79, 80 | syl132anc 1387 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑆 ∨ 𝑑) ∧ 𝑌) = 𝑆) |
82 | 81 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → ((𝑆 ∨ 𝑑) ∧ 𝑌) = 𝑆) |
83 | 67, 75, 82 | 3brtr3d 5105 |
. . . . 5
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → 𝐶 ≤ 𝑆) |
84 | | hlatl 37374 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
85 | 15, 84 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ AtLat) |
86 | 1, 2, 3, 4, 61, 68 | dalemcea 37674 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ 𝐴) |
87 | 2, 4 | atcmp 37325 |
. . . . . . . 8
⊢ ((𝐾 ∈ AtLat ∧ 𝐶 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝐶 ≤ 𝑆 ↔ 𝐶 = 𝑆)) |
88 | 85, 86, 26, 87 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ≤ 𝑆 ↔ 𝐶 = 𝑆)) |
89 | 88 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐶 ≤ 𝑆 ↔ 𝐶 = 𝑆)) |
90 | 89 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → (𝐶 ≤ 𝑆 ↔ 𝐶 = 𝑆)) |
91 | 83, 90 | mpbid 231 |
. . . 4
⊢ (((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) ∧ 𝑐 = 𝐺) → 𝐶 = 𝑆) |
92 | 91 | ex 413 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 = 𝐺 → 𝐶 = 𝑆)) |
93 | 92 | necon3d 2964 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐶 ≠ 𝑆 → 𝑐 ≠ 𝐺)) |
94 | 6, 93 | mpd 15 |
1
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≠ 𝐺) |