Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem25 Structured version   Visualization version   GIF version

Theorem dalem25 39663
Description: Lemma for dath 39701. Show that the dummy center of perspectivity 𝑐 is different from auxiliary atom 𝐺. (Contributed by NM, 3-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem23.m = (meet‘𝐾)
dalem23.o 𝑂 = (LPlanes‘𝐾)
dalem23.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem23.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem23.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
Assertion
Ref Expression
dalem25 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐺)

Proof of Theorem dalem25
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . 4 = (le‘𝐾)
3 dalem.j . . . 4 = (join‘𝐾)
4 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4dalemcnes 39615 . . 3 (𝜑𝐶𝑆)
653ad2ant1 1133 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐶𝑆)
7 dalem.ps . . . . . . . . . . 11 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
87dalemclccjdd 39653 . . . . . . . . . 10 (𝜓𝐶 (𝑐 𝑑))
983ad2ant3 1135 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 (𝑐 𝑑))
109adantr 480 . . . . . . . 8 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐶 (𝑐 𝑑))
11 simpr 484 . . . . . . . . . 10 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝑐 = 𝐺)
12 dalem23.g . . . . . . . . . . . . 13 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
131dalemkelat 39589 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ Lat)
14133ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
151dalemkehl 39588 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ HL)
16153ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
177dalemccea 39648 . . . . . . . . . . . . . . . 16 (𝜓𝑐𝐴)
18173ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
191dalempea 39591 . . . . . . . . . . . . . . . 16 (𝜑𝑃𝐴)
20193ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝑃𝐴)
21 eqid 2735 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
2221, 3, 4hlatjcl 39331 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) → (𝑐 𝑃) ∈ (Base‘𝐾))
2316, 18, 20, 22syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) ∈ (Base‘𝐾))
247dalemddea 39649 . . . . . . . . . . . . . . . 16 (𝜓𝑑𝐴)
25243ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
261dalemsea 39594 . . . . . . . . . . . . . . . 16 (𝜑𝑆𝐴)
27263ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝐴)
2821, 3, 4hlatjcl 39331 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) ∈ (Base‘𝐾))
2916, 25, 27, 28syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) ∈ (Base‘𝐾))
30 dalem23.m . . . . . . . . . . . . . . 15 = (meet‘𝐾)
3121, 2, 30latmle2 18473 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑐 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 𝑆) ∈ (Base‘𝐾)) → ((𝑐 𝑃) (𝑑 𝑆)) (𝑑 𝑆))
3214, 23, 29, 31syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) (𝑑 𝑆))
3312, 32eqbrtrid 5154 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 (𝑑 𝑆))
343, 4hlatjcom 39332 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) = (𝑆 𝑑))
3516, 25, 27, 34syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) = (𝑆 𝑑))
3633, 35breqtrd 5145 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 (𝑆 𝑑))
3736adantr 480 . . . . . . . . . 10 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐺 (𝑆 𝑑))
3811, 37eqbrtrd 5141 . . . . . . . . 9 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝑐 (𝑆 𝑑))
392, 3, 4hlatlej2 39340 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑑𝐴) → 𝑑 (𝑆 𝑑))
4016, 27, 25, 39syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝑑 (𝑆 𝑑))
4140adantr 480 . . . . . . . . 9 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝑑 (𝑆 𝑑))
427, 4dalemcceb 39654 . . . . . . . . . . . 12 (𝜓𝑐 ∈ (Base‘𝐾))
43423ad2ant3 1135 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
4421, 4atbase 39253 . . . . . . . . . . . . 13 (𝑑𝐴𝑑 ∈ (Base‘𝐾))
4524, 44syl 17 . . . . . . . . . . . 12 (𝜓𝑑 ∈ (Base‘𝐾))
46453ad2ant3 1135 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑑 ∈ (Base‘𝐾))
4721, 3, 4hlatjcl 39331 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑑𝐴) → (𝑆 𝑑) ∈ (Base‘𝐾))
4816, 27, 25, 47syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → (𝑆 𝑑) ∈ (Base‘𝐾))
4921, 2, 3latjle12 18458 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ 𝑑 ∈ (Base‘𝐾) ∧ (𝑆 𝑑) ∈ (Base‘𝐾))) → ((𝑐 (𝑆 𝑑) ∧ 𝑑 (𝑆 𝑑)) ↔ (𝑐 𝑑) (𝑆 𝑑)))
5014, 43, 46, 48, 49syl13anc 1374 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 (𝑆 𝑑) ∧ 𝑑 (𝑆 𝑑)) ↔ (𝑐 𝑑) (𝑆 𝑑)))
5150adantr 480 . . . . . . . . 9 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → ((𝑐 (𝑆 𝑑) ∧ 𝑑 (𝑆 𝑑)) ↔ (𝑐 𝑑) (𝑆 𝑑)))
5238, 41, 51mpbi2and 712 . . . . . . . 8 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝑐 𝑑) (𝑆 𝑑))
531, 4dalemceb 39603 . . . . . . . . . . 11 (𝜑𝐶 ∈ (Base‘𝐾))
54533ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 ∈ (Base‘𝐾))
5521, 3, 4hlatjcl 39331 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑑𝐴) → (𝑐 𝑑) ∈ (Base‘𝐾))
5616, 18, 25, 55syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑑) ∈ (Base‘𝐾))
5721, 2lattr 18452 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ (𝑆 𝑑) ∈ (Base‘𝐾))) → ((𝐶 (𝑐 𝑑) ∧ (𝑐 𝑑) (𝑆 𝑑)) → 𝐶 (𝑆 𝑑)))
5814, 54, 56, 48, 57syl13anc 1374 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → ((𝐶 (𝑐 𝑑) ∧ (𝑐 𝑑) (𝑆 𝑑)) → 𝐶 (𝑆 𝑑)))
5958adantr 480 . . . . . . . 8 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → ((𝐶 (𝑐 𝑑) ∧ (𝑐 𝑑) (𝑆 𝑑)) → 𝐶 (𝑆 𝑑)))
6010, 52, 59mp2and 699 . . . . . . 7 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐶 (𝑆 𝑑))
61 dalem23.o . . . . . . . . . . 11 𝑂 = (LPlanes‘𝐾)
621, 61dalemyeb 39614 . . . . . . . . . 10 (𝜑𝑌 ∈ (Base‘𝐾))
63623ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ∈ (Base‘𝐾))
6421, 2, 30latmlem1 18477 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑆 𝑑) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → (𝐶 (𝑆 𝑑) → (𝐶 𝑌) ((𝑆 𝑑) 𝑌)))
6514, 54, 48, 63, 64syl13anc 1374 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝐶 (𝑆 𝑑) → (𝐶 𝑌) ((𝑆 𝑑) 𝑌)))
6665adantr 480 . . . . . . 7 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝐶 (𝑆 𝑑) → (𝐶 𝑌) ((𝑆 𝑑) 𝑌)))
6760, 66mpd 15 . . . . . 6 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝐶 𝑌) ((𝑆 𝑑) 𝑌))
68 dalem23.y . . . . . . . . . 10 𝑌 = ((𝑃 𝑄) 𝑅)
69 dalem23.z . . . . . . . . . 10 𝑍 = ((𝑆 𝑇) 𝑈)
701, 2, 3, 4, 61, 68, 69dalem17 39645 . . . . . . . . 9 ((𝜑𝑌 = 𝑍) → 𝐶 𝑌)
71703adant3 1132 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 𝑌)
7221, 2, 30latleeqm1 18475 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝐶 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝐶))
7314, 54, 63, 72syl3anc 1373 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝐶 𝑌 ↔ (𝐶 𝑌) = 𝐶))
7471, 73mpbid 232 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐶 𝑌) = 𝐶)
7574adantr 480 . . . . . 6 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝐶 𝑌) = 𝐶)
761, 2, 3, 4, 69dalemsly 39620 . . . . . . . . 9 ((𝜑𝑌 = 𝑍) → 𝑆 𝑌)
77763adant3 1132 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝑆 𝑌)
787dalem-ddly 39651 . . . . . . . . 9 (𝜓 → ¬ 𝑑 𝑌)
79783ad2ant3 1135 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑌)
8021, 2, 3, 30, 42atjm 39410 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑑𝐴𝑌 ∈ (Base‘𝐾)) ∧ (𝑆 𝑌 ∧ ¬ 𝑑 𝑌)) → ((𝑆 𝑑) 𝑌) = 𝑆)
8116, 27, 25, 63, 77, 79, 80syl132anc 1390 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝑆 𝑑) 𝑌) = 𝑆)
8281adantr 480 . . . . . 6 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → ((𝑆 𝑑) 𝑌) = 𝑆)
8367, 75, 823brtr3d 5150 . . . . 5 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐶 𝑆)
84 hlatl 39324 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
8515, 84syl 17 . . . . . . . 8 (𝜑𝐾 ∈ AtLat)
861, 2, 3, 4, 61, 68dalemcea 39625 . . . . . . . 8 (𝜑𝐶𝐴)
872, 4atcmp 39275 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝐶𝐴𝑆𝐴) → (𝐶 𝑆𝐶 = 𝑆))
8885, 86, 26, 87syl3anc 1373 . . . . . . 7 (𝜑 → (𝐶 𝑆𝐶 = 𝑆))
89883ad2ant1 1133 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝐶 𝑆𝐶 = 𝑆))
9089adantr 480 . . . . 5 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → (𝐶 𝑆𝐶 = 𝑆))
9183, 90mpbid 232 . . . 4 (((𝜑𝑌 = 𝑍𝜓) ∧ 𝑐 = 𝐺) → 𝐶 = 𝑆)
9291ex 412 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 = 𝐺𝐶 = 𝑆))
9392necon3d 2953 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐶𝑆𝑐𝐺))
946, 93mpd 15 1 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6530  (class class class)co 7403  Basecbs 17226  lecple 17276  joincjn 18321  meetcmee 18322  Latclat 18439  Atomscatm 39227  AtLatcal 39228  HLchlt 39314  LPlanesclpl 39457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-proset 18304  df-poset 18323  df-plt 18338  df-lub 18354  df-glb 18355  df-join 18356  df-meet 18357  df-p0 18433  df-lat 18440  df-clat 18507  df-oposet 39140  df-ol 39142  df-oml 39143  df-covers 39230  df-ats 39231  df-atl 39262  df-cvlat 39286  df-hlat 39315  df-llines 39463  df-lplanes 39464
This theorem is referenced by:  dalem28  39665  dalem31N  39668
  Copyright terms: Public domain W3C validator