![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemcceb | Structured version Visualization version GIF version |
Description: Lemma for dath 38911. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.) |
Ref | Expression |
---|---|
da.ps0 | β’ (π β ((π β π΄ β§ π β π΄) β§ Β¬ π β€ π β§ (π β π β§ Β¬ π β€ π β§ πΆ β€ (π β¨ π)))) |
da.a1 | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
dalemcceb | β’ (π β π β (BaseβπΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | da.ps0 | . . 3 β’ (π β ((π β π΄ β§ π β π΄) β§ Β¬ π β€ π β§ (π β π β§ Β¬ π β€ π β§ πΆ β€ (π β¨ π)))) | |
2 | 1 | dalemccea 38858 | . 2 β’ (π β π β π΄) |
3 | eqid 2731 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
4 | da.a1 | . . 3 β’ π΄ = (AtomsβπΎ) | |
5 | 3, 4 | atbase 38463 | . 2 β’ (π β π΄ β π β (BaseβπΎ)) |
6 | 2, 5 | syl 17 | 1 β’ (π β π β (BaseβπΎ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 class class class wbr 5149 βcfv 6544 (class class class)co 7412 Basecbs 17149 Atomscatm 38437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ats 38441 |
This theorem is referenced by: dalem21 38869 dalem25 38873 dalem38 38885 dalem39 38886 dalem44 38891 dalem45 38892 dalem48 38895 dalem52 38899 |
Copyright terms: Public domain | W3C validator |