| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemcceb | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39701. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.) |
| Ref | Expression |
|---|---|
| da.ps0 | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| da.a1 | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| dalemcceb | ⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | da.ps0 | . . 3 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
| 2 | 1 | dalemccea 39648 | . 2 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
| 3 | eqid 2735 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | da.a1 | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | atbase 39253 | . 2 ⊢ (𝑐 ∈ 𝐴 → 𝑐 ∈ (Base‘𝐾)) |
| 6 | 2, 5 | syl 17 | 1 ⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Atomscatm 39227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-ats 39231 |
| This theorem is referenced by: dalem21 39659 dalem25 39663 dalem38 39675 dalem39 39676 dalem44 39681 dalem45 39682 dalem48 39685 dalem52 39689 |
| Copyright terms: Public domain | W3C validator |