Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemcceb | Structured version Visualization version GIF version |
Description: Lemma for dath 37750. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.) |
Ref | Expression |
---|---|
da.ps0 | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
da.a1 | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
dalemcceb | ⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | da.ps0 | . . 3 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
2 | 1 | dalemccea 37697 | . 2 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
3 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | da.a1 | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | atbase 37303 | . 2 ⊢ (𝑐 ∈ 𝐴 → 𝑐 ∈ (Base‘𝐾)) |
6 | 2, 5 | syl 17 | 1 ⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Atomscatm 37277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ats 37281 |
This theorem is referenced by: dalem21 37708 dalem25 37712 dalem38 37724 dalem39 37725 dalem44 37730 dalem45 37731 dalem48 37734 dalem52 37738 |
Copyright terms: Public domain | W3C validator |