![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemcceb | Structured version Visualization version GIF version |
Description: Lemma for dath 39339. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.) |
Ref | Expression |
---|---|
da.ps0 | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
da.a1 | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
dalemcceb | ⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | da.ps0 | . . 3 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
2 | 1 | dalemccea 39286 | . 2 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
3 | eqid 2725 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | da.a1 | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | atbase 38891 | . 2 ⊢ (𝑐 ∈ 𝐴 → 𝑐 ∈ (Base‘𝐾)) |
6 | 2, 5 | syl 17 | 1 ⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 Atomscatm 38865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-ats 38869 |
This theorem is referenced by: dalem21 39297 dalem25 39301 dalem38 39313 dalem39 39314 dalem44 39319 dalem45 39320 dalem48 39323 dalem52 39327 |
Copyright terms: Public domain | W3C validator |