![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemcceb | Structured version Visualization version GIF version |
Description: Lemma for dath 39718. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.) |
Ref | Expression |
---|---|
da.ps0 | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
da.a1 | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
dalemcceb | ⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | da.ps0 | . . 3 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
2 | 1 | dalemccea 39665 | . 2 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
3 | eqid 2734 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | da.a1 | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | atbase 39270 | . 2 ⊢ (𝑐 ∈ 𝐴 → 𝑐 ∈ (Base‘𝐾)) |
6 | 2, 5 | syl 17 | 1 ⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 Atomscatm 39244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-ats 39248 |
This theorem is referenced by: dalem21 39676 dalem25 39680 dalem38 39692 dalem39 39693 dalem44 39698 dalem45 39699 dalem48 39702 dalem52 39706 |
Copyright terms: Public domain | W3C validator |