| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemcceb | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39845. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.) |
| Ref | Expression |
|---|---|
| da.ps0 | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| da.a1 | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| dalemcceb | ⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | da.ps0 | . . 3 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
| 2 | 1 | dalemccea 39792 | . 2 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
| 3 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | da.a1 | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | atbase 39398 | . 2 ⊢ (𝑐 ∈ 𝐴 → 𝑐 ∈ (Base‘𝐾)) |
| 6 | 2, 5 | syl 17 | 1 ⊢ (𝜓 → 𝑐 ∈ (Base‘𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Atomscatm 39372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ats 39376 |
| This theorem is referenced by: dalem21 39803 dalem25 39807 dalem38 39819 dalem39 39820 dalem44 39825 dalem45 39826 dalem48 39829 dalem52 39833 |
| Copyright terms: Public domain | W3C validator |