Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemcceb Structured version   Visualization version   GIF version

Theorem dalemcceb 39654
Description: Lemma for dath 39701. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.)
Hypotheses
Ref Expression
da.ps0 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
da.a1 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dalemcceb (𝜓𝑐 ∈ (Base‘𝐾))

Proof of Theorem dalemcceb
StepHypRef Expression
1 da.ps0 . . 3 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
21dalemccea 39648 . 2 (𝜓𝑐𝐴)
3 eqid 2735 . . 3 (Base‘𝐾) = (Base‘𝐾)
4 da.a1 . . 3 𝐴 = (Atoms‘𝐾)
53, 4atbase 39253 . 2 (𝑐𝐴𝑐 ∈ (Base‘𝐾))
62, 5syl 17 1 (𝜓𝑐 ∈ (Base‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6530  (class class class)co 7403  Basecbs 17226  Atomscatm 39227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6483  df-fun 6532  df-fv 6538  df-ats 39231
This theorem is referenced by:  dalem21  39659  dalem25  39663  dalem38  39675  dalem39  39676  dalem44  39681  dalem45  39682  dalem48  39685  dalem52  39689
  Copyright terms: Public domain W3C validator