Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem21 Structured version   Visualization version   GIF version

Theorem dalem21 37635
Description: Lemma for dath 37677. Show that lines 𝑐𝑑 and 𝑃𝑆 intersect at an atom. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem21.m = (meet‘𝐾)
dalem21.o 𝑂 = (LPlanes‘𝐾)
dalem21.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem21.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem21 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝐴)

Proof of Theorem dalem21
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 37564 . . 3 (𝜑𝐾 ∈ HL)
323ad2ant1 1131 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
4 dalem.l . . . 4 = (le‘𝐾)
5 dalem.j . . . 4 = (join‘𝐾)
6 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
7 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
81, 4, 5, 6, 7dalemcjden 37633 . . 3 ((𝜑𝜓) → (𝑐 𝑑) ∈ (LLines‘𝐾))
983adant2 1129 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑑) ∈ (LLines‘𝐾))
10 dalem21.o . . . 4 𝑂 = (LPlanes‘𝐾)
11 dalem21.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
121, 4, 5, 6, 10, 11dalempjsen 37594 . . 3 (𝜑 → (𝑃 𝑆) ∈ (LLines‘𝐾))
13123ad2ant1 1131 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) ∈ (LLines‘𝐾))
141, 4, 5, 6, 10, 11dalemply 37595 . . . . . . 7 (𝜑𝑃 𝑌)
1514adantr 480 . . . . . 6 ((𝜑𝑌 = 𝑍) → 𝑃 𝑌)
16 dalem21.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
171, 4, 5, 6, 16dalemsly 37596 . . . . . 6 ((𝜑𝑌 = 𝑍) → 𝑆 𝑌)
181dalemkelat 37565 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
191, 6dalempeb 37580 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝐾))
201, 6dalemseb 37583 . . . . . . . 8 (𝜑𝑆 ∈ (Base‘𝐾))
211, 10dalemyeb 37590 . . . . . . . 8 (𝜑𝑌 ∈ (Base‘𝐾))
22 eqid 2738 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2322, 4, 5latjle12 18083 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑃 𝑌𝑆 𝑌) ↔ (𝑃 𝑆) 𝑌))
2418, 19, 20, 21, 23syl13anc 1370 . . . . . . 7 (𝜑 → ((𝑃 𝑌𝑆 𝑌) ↔ (𝑃 𝑆) 𝑌))
2524adantr 480 . . . . . 6 ((𝜑𝑌 = 𝑍) → ((𝑃 𝑌𝑆 𝑌) ↔ (𝑃 𝑆) 𝑌))
2615, 17, 25mpbi2and 708 . . . . 5 ((𝜑𝑌 = 𝑍) → (𝑃 𝑆) 𝑌)
27263adant3 1130 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) 𝑌)
287dalem-ccly 37626 . . . . . . 7 (𝜓 → ¬ 𝑐 𝑌)
2928adantl 481 . . . . . 6 ((𝜑𝜓) → ¬ 𝑐 𝑌)
3018adantr 480 . . . . . . . 8 ((𝜑𝜓) → 𝐾 ∈ Lat)
317, 6dalemcceb 37630 . . . . . . . . 9 (𝜓𝑐 ∈ (Base‘𝐾))
3231adantl 481 . . . . . . . 8 ((𝜑𝜓) → 𝑐 ∈ (Base‘𝐾))
337dalemddea 37625 . . . . . . . . . 10 (𝜓𝑑𝐴)
3422, 6atbase 37230 . . . . . . . . . 10 (𝑑𝐴𝑑 ∈ (Base‘𝐾))
3533, 34syl 17 . . . . . . . . 9 (𝜓𝑑 ∈ (Base‘𝐾))
3635adantl 481 . . . . . . . 8 ((𝜑𝜓) → 𝑑 ∈ (Base‘𝐾))
3722, 4, 5latlej1 18081 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑐 ∈ (Base‘𝐾) ∧ 𝑑 ∈ (Base‘𝐾)) → 𝑐 (𝑐 𝑑))
3830, 32, 36, 37syl3anc 1369 . . . . . . 7 ((𝜑𝜓) → 𝑐 (𝑐 𝑑))
39 eqid 2738 . . . . . . . . . 10 (LLines‘𝐾) = (LLines‘𝐾)
4022, 39llnbase 37450 . . . . . . . . 9 ((𝑐 𝑑) ∈ (LLines‘𝐾) → (𝑐 𝑑) ∈ (Base‘𝐾))
418, 40syl 17 . . . . . . . 8 ((𝜑𝜓) → (𝑐 𝑑) ∈ (Base‘𝐾))
4221adantr 480 . . . . . . . 8 ((𝜑𝜓) → 𝑌 ∈ (Base‘𝐾))
4322, 4lattr 18077 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑐 (𝑐 𝑑) ∧ (𝑐 𝑑) 𝑌) → 𝑐 𝑌))
4430, 32, 41, 42, 43syl13anc 1370 . . . . . . 7 ((𝜑𝜓) → ((𝑐 (𝑐 𝑑) ∧ (𝑐 𝑑) 𝑌) → 𝑐 𝑌))
4538, 44mpand 691 . . . . . 6 ((𝜑𝜓) → ((𝑐 𝑑) 𝑌𝑐 𝑌))
4629, 45mtod 197 . . . . 5 ((𝜑𝜓) → ¬ (𝑐 𝑑) 𝑌)
47463adant2 1129 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ¬ (𝑐 𝑑) 𝑌)
48 nbrne2 5090 . . . 4 (((𝑃 𝑆) 𝑌 ∧ ¬ (𝑐 𝑑) 𝑌) → (𝑃 𝑆) ≠ (𝑐 𝑑))
4927, 47, 48syl2anc 583 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) ≠ (𝑐 𝑑))
5049necomd 2998 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑑) ≠ (𝑃 𝑆))
51 hlatl 37301 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
522, 51syl 17 . . . . 5 (𝜑𝐾 ∈ AtLat)
5352adantr 480 . . . 4 ((𝜑𝜓) → 𝐾 ∈ AtLat)
541dalempea 37567 . . . . . . 7 (𝜑𝑃𝐴)
551dalemsea 37570 . . . . . . 7 (𝜑𝑆𝐴)
5622, 5, 6hlatjcl 37308 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
572, 54, 55, 56syl3anc 1369 . . . . . 6 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
5857adantr 480 . . . . 5 ((𝜑𝜓) → (𝑃 𝑆) ∈ (Base‘𝐾))
59 dalem21.m . . . . . 6 = (meet‘𝐾)
6022, 59latmcl 18073 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ (Base‘𝐾))
6130, 41, 58, 60syl3anc 1369 . . . 4 ((𝜑𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ (Base‘𝐾))
621, 4, 5, 6, 10, 11dalemcea 37601 . . . . 5 (𝜑𝐶𝐴)
6362adantr 480 . . . 4 ((𝜑𝜓) → 𝐶𝐴)
647dalemclccjdd 37629 . . . . . 6 (𝜓𝐶 (𝑐 𝑑))
6564adantl 481 . . . . 5 ((𝜑𝜓) → 𝐶 (𝑐 𝑑))
661dalemclpjs 37575 . . . . . 6 (𝜑𝐶 (𝑃 𝑆))
6766adantr 480 . . . . 5 ((𝜑𝜓) → 𝐶 (𝑃 𝑆))
681, 6dalemceb 37579 . . . . . . 7 (𝜑𝐶 ∈ (Base‘𝐾))
6968adantr 480 . . . . . 6 ((𝜑𝜓) → 𝐶 ∈ (Base‘𝐾))
7022, 4, 59latlem12 18099 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾))) → ((𝐶 (𝑐 𝑑) ∧ 𝐶 (𝑃 𝑆)) ↔ 𝐶 ((𝑐 𝑑) (𝑃 𝑆))))
7130, 69, 41, 58, 70syl13anc 1370 . . . . 5 ((𝜑𝜓) → ((𝐶 (𝑐 𝑑) ∧ 𝐶 (𝑃 𝑆)) ↔ 𝐶 ((𝑐 𝑑) (𝑃 𝑆))))
7265, 67, 71mpbi2and 708 . . . 4 ((𝜑𝜓) → 𝐶 ((𝑐 𝑑) (𝑃 𝑆)))
73 eqid 2738 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
7422, 4, 73, 6atlen0 37251 . . . 4 (((𝐾 ∈ AtLat ∧ ((𝑐 𝑑) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ 𝐶𝐴) ∧ 𝐶 ((𝑐 𝑑) (𝑃 𝑆))) → ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))
7553, 61, 63, 72, 74syl31anc 1371 . . 3 ((𝜑𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))
76753adant2 1129 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))
7759, 73, 6, 392llnmat 37465 . 2 (((𝐾 ∈ HL ∧ (𝑐 𝑑) ∈ (LLines‘𝐾) ∧ (𝑃 𝑆) ∈ (LLines‘𝐾)) ∧ ((𝑐 𝑑) ≠ (𝑃 𝑆) ∧ ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝐴)
783, 9, 13, 50, 76, 77syl32anc 1376 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  0.cp0 18056  Latclat 18064  Atomscatm 37204  AtLatcal 37205  HLchlt 37291  LLinesclln 37432  LPlanesclpl 37433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440
This theorem is referenced by:  dalem22  37636
  Copyright terms: Public domain W3C validator