Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem21 Structured version   Visualization version   GIF version

Theorem dalem21 39661
Description: Lemma for dath 39703. Show that lines 𝑐𝑑 and 𝑃𝑆 intersect at an atom. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem21.m = (meet‘𝐾)
dalem21.o 𝑂 = (LPlanes‘𝐾)
dalem21.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem21.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem21 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝐴)

Proof of Theorem dalem21
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 39590 . . 3 (𝜑𝐾 ∈ HL)
323ad2ant1 1133 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
4 dalem.l . . . 4 = (le‘𝐾)
5 dalem.j . . . 4 = (join‘𝐾)
6 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
7 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
81, 4, 5, 6, 7dalemcjden 39659 . . 3 ((𝜑𝜓) → (𝑐 𝑑) ∈ (LLines‘𝐾))
983adant2 1131 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑑) ∈ (LLines‘𝐾))
10 dalem21.o . . . 4 𝑂 = (LPlanes‘𝐾)
11 dalem21.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
121, 4, 5, 6, 10, 11dalempjsen 39620 . . 3 (𝜑 → (𝑃 𝑆) ∈ (LLines‘𝐾))
13123ad2ant1 1133 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) ∈ (LLines‘𝐾))
141, 4, 5, 6, 10, 11dalemply 39621 . . . . . . 7 (𝜑𝑃 𝑌)
1514adantr 480 . . . . . 6 ((𝜑𝑌 = 𝑍) → 𝑃 𝑌)
16 dalem21.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
171, 4, 5, 6, 16dalemsly 39622 . . . . . 6 ((𝜑𝑌 = 𝑍) → 𝑆 𝑌)
181dalemkelat 39591 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
191, 6dalempeb 39606 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝐾))
201, 6dalemseb 39609 . . . . . . . 8 (𝜑𝑆 ∈ (Base‘𝐾))
211, 10dalemyeb 39616 . . . . . . . 8 (𝜑𝑌 ∈ (Base‘𝐾))
22 eqid 2729 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2322, 4, 5latjle12 18385 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑃 𝑌𝑆 𝑌) ↔ (𝑃 𝑆) 𝑌))
2418, 19, 20, 21, 23syl13anc 1374 . . . . . . 7 (𝜑 → ((𝑃 𝑌𝑆 𝑌) ↔ (𝑃 𝑆) 𝑌))
2524adantr 480 . . . . . 6 ((𝜑𝑌 = 𝑍) → ((𝑃 𝑌𝑆 𝑌) ↔ (𝑃 𝑆) 𝑌))
2615, 17, 25mpbi2and 712 . . . . 5 ((𝜑𝑌 = 𝑍) → (𝑃 𝑆) 𝑌)
27263adant3 1132 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) 𝑌)
287dalem-ccly 39652 . . . . . . 7 (𝜓 → ¬ 𝑐 𝑌)
2928adantl 481 . . . . . 6 ((𝜑𝜓) → ¬ 𝑐 𝑌)
3018adantr 480 . . . . . . . 8 ((𝜑𝜓) → 𝐾 ∈ Lat)
317, 6dalemcceb 39656 . . . . . . . . 9 (𝜓𝑐 ∈ (Base‘𝐾))
3231adantl 481 . . . . . . . 8 ((𝜑𝜓) → 𝑐 ∈ (Base‘𝐾))
337dalemddea 39651 . . . . . . . . . 10 (𝜓𝑑𝐴)
3422, 6atbase 39255 . . . . . . . . . 10 (𝑑𝐴𝑑 ∈ (Base‘𝐾))
3533, 34syl 17 . . . . . . . . 9 (𝜓𝑑 ∈ (Base‘𝐾))
3635adantl 481 . . . . . . . 8 ((𝜑𝜓) → 𝑑 ∈ (Base‘𝐾))
3722, 4, 5latlej1 18383 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑐 ∈ (Base‘𝐾) ∧ 𝑑 ∈ (Base‘𝐾)) → 𝑐 (𝑐 𝑑))
3830, 32, 36, 37syl3anc 1373 . . . . . . 7 ((𝜑𝜓) → 𝑐 (𝑐 𝑑))
39 eqid 2729 . . . . . . . . . 10 (LLines‘𝐾) = (LLines‘𝐾)
4022, 39llnbase 39476 . . . . . . . . 9 ((𝑐 𝑑) ∈ (LLines‘𝐾) → (𝑐 𝑑) ∈ (Base‘𝐾))
418, 40syl 17 . . . . . . . 8 ((𝜑𝜓) → (𝑐 𝑑) ∈ (Base‘𝐾))
4221adantr 480 . . . . . . . 8 ((𝜑𝜓) → 𝑌 ∈ (Base‘𝐾))
4322, 4lattr 18379 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑐 (𝑐 𝑑) ∧ (𝑐 𝑑) 𝑌) → 𝑐 𝑌))
4430, 32, 41, 42, 43syl13anc 1374 . . . . . . 7 ((𝜑𝜓) → ((𝑐 (𝑐 𝑑) ∧ (𝑐 𝑑) 𝑌) → 𝑐 𝑌))
4538, 44mpand 695 . . . . . 6 ((𝜑𝜓) → ((𝑐 𝑑) 𝑌𝑐 𝑌))
4629, 45mtod 198 . . . . 5 ((𝜑𝜓) → ¬ (𝑐 𝑑) 𝑌)
47463adant2 1131 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ¬ (𝑐 𝑑) 𝑌)
48 nbrne2 5122 . . . 4 (((𝑃 𝑆) 𝑌 ∧ ¬ (𝑐 𝑑) 𝑌) → (𝑃 𝑆) ≠ (𝑐 𝑑))
4927, 47, 48syl2anc 584 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) ≠ (𝑐 𝑑))
5049necomd 2980 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑑) ≠ (𝑃 𝑆))
51 hlatl 39326 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
522, 51syl 17 . . . . 5 (𝜑𝐾 ∈ AtLat)
5352adantr 480 . . . 4 ((𝜑𝜓) → 𝐾 ∈ AtLat)
541dalempea 39593 . . . . . . 7 (𝜑𝑃𝐴)
551dalemsea 39596 . . . . . . 7 (𝜑𝑆𝐴)
5622, 5, 6hlatjcl 39333 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
572, 54, 55, 56syl3anc 1373 . . . . . 6 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
5857adantr 480 . . . . 5 ((𝜑𝜓) → (𝑃 𝑆) ∈ (Base‘𝐾))
59 dalem21.m . . . . . 6 = (meet‘𝐾)
6022, 59latmcl 18375 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ (Base‘𝐾))
6130, 41, 58, 60syl3anc 1373 . . . 4 ((𝜑𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ (Base‘𝐾))
621, 4, 5, 6, 10, 11dalemcea 39627 . . . . 5 (𝜑𝐶𝐴)
6362adantr 480 . . . 4 ((𝜑𝜓) → 𝐶𝐴)
647dalemclccjdd 39655 . . . . . 6 (𝜓𝐶 (𝑐 𝑑))
6564adantl 481 . . . . 5 ((𝜑𝜓) → 𝐶 (𝑐 𝑑))
661dalemclpjs 39601 . . . . . 6 (𝜑𝐶 (𝑃 𝑆))
6766adantr 480 . . . . 5 ((𝜑𝜓) → 𝐶 (𝑃 𝑆))
681, 6dalemceb 39605 . . . . . . 7 (𝜑𝐶 ∈ (Base‘𝐾))
6968adantr 480 . . . . . 6 ((𝜑𝜓) → 𝐶 ∈ (Base‘𝐾))
7022, 4, 59latlem12 18401 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾))) → ((𝐶 (𝑐 𝑑) ∧ 𝐶 (𝑃 𝑆)) ↔ 𝐶 ((𝑐 𝑑) (𝑃 𝑆))))
7130, 69, 41, 58, 70syl13anc 1374 . . . . 5 ((𝜑𝜓) → ((𝐶 (𝑐 𝑑) ∧ 𝐶 (𝑃 𝑆)) ↔ 𝐶 ((𝑐 𝑑) (𝑃 𝑆))))
7265, 67, 71mpbi2and 712 . . . 4 ((𝜑𝜓) → 𝐶 ((𝑐 𝑑) (𝑃 𝑆)))
73 eqid 2729 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
7422, 4, 73, 6atlen0 39276 . . . 4 (((𝐾 ∈ AtLat ∧ ((𝑐 𝑑) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ 𝐶𝐴) ∧ 𝐶 ((𝑐 𝑑) (𝑃 𝑆))) → ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))
7553, 61, 63, 72, 74syl31anc 1375 . . 3 ((𝜑𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))
76753adant2 1131 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))
7759, 73, 6, 392llnmat 39491 . 2 (((𝐾 ∈ HL ∧ (𝑐 𝑑) ∈ (LLines‘𝐾) ∧ (𝑃 𝑆) ∈ (LLines‘𝐾)) ∧ ((𝑐 𝑑) ≠ (𝑃 𝑆) ∧ ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝐴)
783, 9, 13, 50, 76, 77syl32anc 1380 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  0.cp0 18358  Latclat 18366  Atomscatm 39229  AtLatcal 39230  HLchlt 39316  LLinesclln 39458  LPlanesclpl 39459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466
This theorem is referenced by:  dalem22  39662
  Copyright terms: Public domain W3C validator