Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem21 Structured version   Visualization version   GIF version

Theorem dalem21 36822
Description: Lemma for dath 36864. Show that lines 𝑐𝑑 and 𝑃𝑆 intersect at an atom. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem21.m = (meet‘𝐾)
dalem21.o 𝑂 = (LPlanes‘𝐾)
dalem21.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem21.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem21 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝐴)

Proof of Theorem dalem21
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 36751 . . 3 (𝜑𝐾 ∈ HL)
323ad2ant1 1128 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
4 dalem.l . . . 4 = (le‘𝐾)
5 dalem.j . . . 4 = (join‘𝐾)
6 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
7 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
81, 4, 5, 6, 7dalemcjden 36820 . . 3 ((𝜑𝜓) → (𝑐 𝑑) ∈ (LLines‘𝐾))
983adant2 1126 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑑) ∈ (LLines‘𝐾))
10 dalem21.o . . . 4 𝑂 = (LPlanes‘𝐾)
11 dalem21.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
121, 4, 5, 6, 10, 11dalempjsen 36781 . . 3 (𝜑 → (𝑃 𝑆) ∈ (LLines‘𝐾))
13123ad2ant1 1128 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) ∈ (LLines‘𝐾))
141, 4, 5, 6, 10, 11dalemply 36782 . . . . . . 7 (𝜑𝑃 𝑌)
1514adantr 483 . . . . . 6 ((𝜑𝑌 = 𝑍) → 𝑃 𝑌)
16 dalem21.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
171, 4, 5, 6, 16dalemsly 36783 . . . . . 6 ((𝜑𝑌 = 𝑍) → 𝑆 𝑌)
181dalemkelat 36752 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
191, 6dalempeb 36767 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝐾))
201, 6dalemseb 36770 . . . . . . . 8 (𝜑𝑆 ∈ (Base‘𝐾))
211, 10dalemyeb 36777 . . . . . . . 8 (𝜑𝑌 ∈ (Base‘𝐾))
22 eqid 2819 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2322, 4, 5latjle12 17664 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑃 𝑌𝑆 𝑌) ↔ (𝑃 𝑆) 𝑌))
2418, 19, 20, 21, 23syl13anc 1367 . . . . . . 7 (𝜑 → ((𝑃 𝑌𝑆 𝑌) ↔ (𝑃 𝑆) 𝑌))
2524adantr 483 . . . . . 6 ((𝜑𝑌 = 𝑍) → ((𝑃 𝑌𝑆 𝑌) ↔ (𝑃 𝑆) 𝑌))
2615, 17, 25mpbi2and 710 . . . . 5 ((𝜑𝑌 = 𝑍) → (𝑃 𝑆) 𝑌)
27263adant3 1127 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) 𝑌)
287dalem-ccly 36813 . . . . . . 7 (𝜓 → ¬ 𝑐 𝑌)
2928adantl 484 . . . . . 6 ((𝜑𝜓) → ¬ 𝑐 𝑌)
3018adantr 483 . . . . . . . 8 ((𝜑𝜓) → 𝐾 ∈ Lat)
317, 6dalemcceb 36817 . . . . . . . . 9 (𝜓𝑐 ∈ (Base‘𝐾))
3231adantl 484 . . . . . . . 8 ((𝜑𝜓) → 𝑐 ∈ (Base‘𝐾))
337dalemddea 36812 . . . . . . . . . 10 (𝜓𝑑𝐴)
3422, 6atbase 36417 . . . . . . . . . 10 (𝑑𝐴𝑑 ∈ (Base‘𝐾))
3533, 34syl 17 . . . . . . . . 9 (𝜓𝑑 ∈ (Base‘𝐾))
3635adantl 484 . . . . . . . 8 ((𝜑𝜓) → 𝑑 ∈ (Base‘𝐾))
3722, 4, 5latlej1 17662 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑐 ∈ (Base‘𝐾) ∧ 𝑑 ∈ (Base‘𝐾)) → 𝑐 (𝑐 𝑑))
3830, 32, 36, 37syl3anc 1366 . . . . . . 7 ((𝜑𝜓) → 𝑐 (𝑐 𝑑))
39 eqid 2819 . . . . . . . . . 10 (LLines‘𝐾) = (LLines‘𝐾)
4022, 39llnbase 36637 . . . . . . . . 9 ((𝑐 𝑑) ∈ (LLines‘𝐾) → (𝑐 𝑑) ∈ (Base‘𝐾))
418, 40syl 17 . . . . . . . 8 ((𝜑𝜓) → (𝑐 𝑑) ∈ (Base‘𝐾))
4221adantr 483 . . . . . . . 8 ((𝜑𝜓) → 𝑌 ∈ (Base‘𝐾))
4322, 4lattr 17658 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑐 (𝑐 𝑑) ∧ (𝑐 𝑑) 𝑌) → 𝑐 𝑌))
4430, 32, 41, 42, 43syl13anc 1367 . . . . . . 7 ((𝜑𝜓) → ((𝑐 (𝑐 𝑑) ∧ (𝑐 𝑑) 𝑌) → 𝑐 𝑌))
4538, 44mpand 693 . . . . . 6 ((𝜑𝜓) → ((𝑐 𝑑) 𝑌𝑐 𝑌))
4629, 45mtod 200 . . . . 5 ((𝜑𝜓) → ¬ (𝑐 𝑑) 𝑌)
47463adant2 1126 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ¬ (𝑐 𝑑) 𝑌)
48 nbrne2 5077 . . . 4 (((𝑃 𝑆) 𝑌 ∧ ¬ (𝑐 𝑑) 𝑌) → (𝑃 𝑆) ≠ (𝑐 𝑑))
4927, 47, 48syl2anc 586 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) ≠ (𝑐 𝑑))
5049necomd 3069 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑑) ≠ (𝑃 𝑆))
51 hlatl 36488 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
522, 51syl 17 . . . . 5 (𝜑𝐾 ∈ AtLat)
5352adantr 483 . . . 4 ((𝜑𝜓) → 𝐾 ∈ AtLat)
541dalempea 36754 . . . . . . 7 (𝜑𝑃𝐴)
551dalemsea 36757 . . . . . . 7 (𝜑𝑆𝐴)
5622, 5, 6hlatjcl 36495 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
572, 54, 55, 56syl3anc 1366 . . . . . 6 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
5857adantr 483 . . . . 5 ((𝜑𝜓) → (𝑃 𝑆) ∈ (Base‘𝐾))
59 dalem21.m . . . . . 6 = (meet‘𝐾)
6022, 59latmcl 17654 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ (Base‘𝐾))
6130, 41, 58, 60syl3anc 1366 . . . 4 ((𝜑𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ (Base‘𝐾))
621, 4, 5, 6, 10, 11dalemcea 36788 . . . . 5 (𝜑𝐶𝐴)
6362adantr 483 . . . 4 ((𝜑𝜓) → 𝐶𝐴)
647dalemclccjdd 36816 . . . . . 6 (𝜓𝐶 (𝑐 𝑑))
6564adantl 484 . . . . 5 ((𝜑𝜓) → 𝐶 (𝑐 𝑑))
661dalemclpjs 36762 . . . . . 6 (𝜑𝐶 (𝑃 𝑆))
6766adantr 483 . . . . 5 ((𝜑𝜓) → 𝐶 (𝑃 𝑆))
681, 6dalemceb 36766 . . . . . . 7 (𝜑𝐶 ∈ (Base‘𝐾))
6968adantr 483 . . . . . 6 ((𝜑𝜓) → 𝐶 ∈ (Base‘𝐾))
7022, 4, 59latlem12 17680 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾))) → ((𝐶 (𝑐 𝑑) ∧ 𝐶 (𝑃 𝑆)) ↔ 𝐶 ((𝑐 𝑑) (𝑃 𝑆))))
7130, 69, 41, 58, 70syl13anc 1367 . . . . 5 ((𝜑𝜓) → ((𝐶 (𝑐 𝑑) ∧ 𝐶 (𝑃 𝑆)) ↔ 𝐶 ((𝑐 𝑑) (𝑃 𝑆))))
7265, 67, 71mpbi2and 710 . . . 4 ((𝜑𝜓) → 𝐶 ((𝑐 𝑑) (𝑃 𝑆)))
73 eqid 2819 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
7422, 4, 73, 6atlen0 36438 . . . 4 (((𝐾 ∈ AtLat ∧ ((𝑐 𝑑) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ 𝐶𝐴) ∧ 𝐶 ((𝑐 𝑑) (𝑃 𝑆))) → ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))
7553, 61, 63, 72, 74syl31anc 1368 . . 3 ((𝜑𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))
76753adant2 1126 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))
7759, 73, 6, 392llnmat 36652 . 2 (((𝐾 ∈ HL ∧ (𝑐 𝑑) ∈ (LLines‘𝐾) ∧ (𝑃 𝑆) ∈ (LLines‘𝐾)) ∧ ((𝑐 𝑑) ≠ (𝑃 𝑆) ∧ ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝐴)
783, 9, 13, 50, 76, 77syl32anc 1373 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014   class class class wbr 5057  cfv 6348  (class class class)co 7148  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  0.cp0 17639  Latclat 17647  Atomscatm 36391  AtLatcal 36392  HLchlt 36478  LLinesclln 36619  LPlanesclpl 36620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479  df-llines 36626  df-lplanes 36627
This theorem is referenced by:  dalem22  36823
  Copyright terms: Public domain W3C validator