|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dedlemb | Structured version Visualization version GIF version | ||
| Description: Lemma for weak deduction theorem. See also ifpfal 1076. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 7-May-2011.) | 
| Ref | Expression | 
|---|---|
| dedlemb | ⊢ (¬ 𝜑 → (𝜒 ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | olc 869 | . . 3 ⊢ ((𝜒 ∧ ¬ 𝜑) → ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑))) | |
| 2 | 1 | expcom 413 | . 2 ⊢ (¬ 𝜑 → (𝜒 → ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) | 
| 3 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜒)) | |
| 4 | 3 | adantld 490 | . . 3 ⊢ (¬ 𝜑 → ((𝜓 ∧ 𝜑) → 𝜒)) | 
| 5 | simpl 482 | . . . 4 ⊢ ((𝜒 ∧ ¬ 𝜑) → 𝜒) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (¬ 𝜑 → ((𝜒 ∧ ¬ 𝜑) → 𝜒)) | 
| 7 | 4, 6 | jaod 860 | . 2 ⊢ (¬ 𝜑 → (((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)) → 𝜒)) | 
| 8 | 2, 7 | impbid 212 | 1 ⊢ (¬ 𝜑 → (𝜒 ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 | 
| This theorem is referenced by: cases2 1048 pm4.42 1054 iffalse 4534 | 
| Copyright terms: Public domain | W3C validator |