MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noelOLD Structured version   Visualization version   GIF version

Theorem noelOLD 4361
Description: Obsolete version of noel 4360 as of 18-Sep-2024. (Contributed by NM, 21-Jun-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
noelOLD ¬ 𝐴 ∈ ∅

Proof of Theorem noelOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm3.24 402 . . . . . . 7 ¬ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)
21nex 1798 . . . . . 6 ¬ ∃𝑦(𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)
3 df-clab 2718 . . . . . . 7 (𝑥 ∈ {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)} ↔ [𝑥 / 𝑦](𝑦 ∈ V ∧ ¬ 𝑦 ∈ V))
4 spsbe 2082 . . . . . . 7 ([𝑥 / 𝑦](𝑦 ∈ V ∧ ¬ 𝑦 ∈ V) → ∃𝑦(𝑦 ∈ V ∧ ¬ 𝑦 ∈ V))
53, 4sylbi 217 . . . . . 6 (𝑥 ∈ {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)} → ∃𝑦(𝑦 ∈ V ∧ ¬ 𝑦 ∈ V))
62, 5mto 197 . . . . 5 ¬ 𝑥 ∈ {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)}
7 df-nul 4353 . . . . . . 7 ∅ = (V ∖ V)
8 df-dif 3979 . . . . . . 7 (V ∖ V) = {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)}
97, 8eqtri 2768 . . . . . 6 ∅ = {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)}
109eleq2i 2836 . . . . 5 (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)})
116, 10mtbir 323 . . . 4 ¬ 𝑥 ∈ ∅
1211intnan 486 . . 3 ¬ (𝑥 = 𝐴𝑥 ∈ ∅)
1312nex 1798 . 2 ¬ ∃𝑥(𝑥 = 𝐴𝑥 ∈ ∅)
14 dfclel 2820 . 2 (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴𝑥 ∈ ∅))
1513, 14mtbir 323 1 ¬ 𝐴 ∈ ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wex 1777  [wsb 2064  wcel 2108  {cab 2717  Vcvv 3488  cdif 3973  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-dif 3979  df-nul 4353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator