Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > noelOLD | Structured version Visualization version GIF version |
Description: Obsolete version of noel 4264 as of 18-Sep-2024. (Contributed by NM, 21-Jun-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
noelOLD | ⊢ ¬ 𝐴 ∈ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.24 403 | . . . . . . 7 ⊢ ¬ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V) | |
2 | 1 | nex 1803 | . . . . . 6 ⊢ ¬ ∃𝑦(𝑦 ∈ V ∧ ¬ 𝑦 ∈ V) |
3 | df-clab 2716 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)} ↔ [𝑥 / 𝑦](𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)) | |
4 | spsbe 2085 | . . . . . . 7 ⊢ ([𝑥 / 𝑦](𝑦 ∈ V ∧ ¬ 𝑦 ∈ V) → ∃𝑦(𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)) | |
5 | 3, 4 | sylbi 216 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)} → ∃𝑦(𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)) |
6 | 2, 5 | mto 196 | . . . . 5 ⊢ ¬ 𝑥 ∈ {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)} |
7 | df-nul 4257 | . . . . . . 7 ⊢ ∅ = (V ∖ V) | |
8 | df-dif 3890 | . . . . . . 7 ⊢ (V ∖ V) = {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)} | |
9 | 7, 8 | eqtri 2766 | . . . . . 6 ⊢ ∅ = {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)} |
10 | 9 | eleq2i 2830 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)}) |
11 | 6, 10 | mtbir 323 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ |
12 | 11 | intnan 487 | . . 3 ⊢ ¬ (𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
13 | 12 | nex 1803 | . 2 ⊢ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅) |
14 | dfclel 2817 | . 2 ⊢ (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ ∅)) | |
15 | 13, 14 | mtbir 323 | 1 ⊢ ¬ 𝐴 ∈ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∃wex 1782 [wsb 2067 ∈ wcel 2106 {cab 2715 Vcvv 3432 ∖ cdif 3884 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-dif 3890 df-nul 4257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |