MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noelOLD Structured version   Visualization version   GIF version

Theorem noelOLD 4265
Description: Obsolete version of noel 4264 as of 18-Sep-2024. (Contributed by NM, 21-Jun-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
noelOLD ¬ 𝐴 ∈ ∅

Proof of Theorem noelOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm3.24 403 . . . . . . 7 ¬ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)
21nex 1803 . . . . . 6 ¬ ∃𝑦(𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)
3 df-clab 2716 . . . . . . 7 (𝑥 ∈ {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)} ↔ [𝑥 / 𝑦](𝑦 ∈ V ∧ ¬ 𝑦 ∈ V))
4 spsbe 2085 . . . . . . 7 ([𝑥 / 𝑦](𝑦 ∈ V ∧ ¬ 𝑦 ∈ V) → ∃𝑦(𝑦 ∈ V ∧ ¬ 𝑦 ∈ V))
53, 4sylbi 216 . . . . . 6 (𝑥 ∈ {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)} → ∃𝑦(𝑦 ∈ V ∧ ¬ 𝑦 ∈ V))
62, 5mto 196 . . . . 5 ¬ 𝑥 ∈ {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)}
7 df-nul 4257 . . . . . . 7 ∅ = (V ∖ V)
8 df-dif 3890 . . . . . . 7 (V ∖ V) = {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)}
97, 8eqtri 2766 . . . . . 6 ∅ = {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)}
109eleq2i 2830 . . . . 5 (𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑦 ∣ (𝑦 ∈ V ∧ ¬ 𝑦 ∈ V)})
116, 10mtbir 323 . . . 4 ¬ 𝑥 ∈ ∅
1211intnan 487 . . 3 ¬ (𝑥 = 𝐴𝑥 ∈ ∅)
1312nex 1803 . 2 ¬ ∃𝑥(𝑥 = 𝐴𝑥 ∈ ∅)
14 dfclel 2817 . 2 (𝐴 ∈ ∅ ↔ ∃𝑥(𝑥 = 𝐴𝑥 ∈ ∅))
1513, 14mtbir 323 1 ¬ 𝐴 ∈ ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1539  wex 1782  [wsb 2067  wcel 2106  {cab 2715  Vcvv 3432  cdif 3884  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-dif 3890  df-nul 4257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator