![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfnul4 | Structured version Visualization version GIF version |
Description: Alternate definition of the empty class/set. (Contributed by BJ, 30-Nov-2019.) Avoid ax-8 2107, df-clel 2809. (Revised by Gino Giotto, 3-Sep-2024.) Prove directly from definition to allow shortening dfnul2 4325. (Revised by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
dfnul4 | ⊢ ∅ = {𝑥 ∣ ⊥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nul 4323 | . 2 ⊢ ∅ = (V ∖ V) | |
2 | df-dif 3951 | . 2 ⊢ (V ∖ V) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)} | |
3 | pm3.24 402 | . . . 4 ⊢ ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) | |
4 | 3 | bifal 1556 | . . 3 ⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ⊥) |
5 | 4 | abbii 2801 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)} = {𝑥 ∣ ⊥} |
6 | 1, 2, 5 | 3eqtri 2763 | 1 ⊢ ∅ = {𝑥 ∣ ⊥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ⊥wfal 1552 ∈ wcel 2105 {cab 2708 Vcvv 3473 ∖ cdif 3945 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-dif 3951 df-nul 4323 |
This theorem is referenced by: dfnul2 4325 dfnul3 4326 noel 4330 vn0 4338 eq0 4343 ab0w 4373 ab0 4374 ab0OLD 4375 abf 4402 eq0rdv 4404 rzal 4508 ralf0 4513 |
Copyright terms: Public domain | W3C validator |