Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfnul4 | Structured version Visualization version GIF version |
Description: Alternate definition of the empty class/set. (Contributed by BJ, 30-Nov-2019.) Avoid ax-8 2110, df-clel 2817. (Revised by Gino Giotto, 3-Sep-2024.) Prove directly from definition to allow shortening dfnul2 4256. (Revised by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
dfnul4 | ⊢ ∅ = {𝑥 ∣ ⊥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nul 4254 | . 2 ⊢ ∅ = (V ∖ V) | |
2 | df-dif 3886 | . 2 ⊢ (V ∖ V) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)} | |
3 | pm3.24 402 | . . . 4 ⊢ ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) | |
4 | 3 | bifal 1555 | . . 3 ⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ⊥) |
5 | 4 | abbii 2809 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)} = {𝑥 ∣ ⊥} |
6 | 1, 2, 5 | 3eqtri 2770 | 1 ⊢ ∅ = {𝑥 ∣ ⊥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ⊥wfal 1551 ∈ wcel 2108 {cab 2715 Vcvv 3422 ∖ cdif 3880 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-dif 3886 df-nul 4254 |
This theorem is referenced by: dfnul2 4256 dfnul3 4257 noel 4261 vn0 4269 eq0 4274 ab0w 4304 ab0 4305 ab0OLD 4306 abf 4333 eq0rdv 4335 rzal 4436 ralf0 4441 |
Copyright terms: Public domain | W3C validator |