![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfnul4 | Structured version Visualization version GIF version |
Description: Alternate definition of the empty class/set. (Contributed by BJ, 30-Nov-2019.) Avoid ax-8 2108, df-clel 2814. (Revised by GG, 3-Sep-2024.) Prove directly from definition to allow shortening dfnul2 4342. (Revised by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
dfnul4 | ⊢ ∅ = {𝑥 ∣ ⊥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nul 4340 | . 2 ⊢ ∅ = (V ∖ V) | |
2 | df-dif 3966 | . 2 ⊢ (V ∖ V) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)} | |
3 | pm3.24 402 | . . . 4 ⊢ ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) | |
4 | 3 | bifal 1553 | . . 3 ⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ⊥) |
5 | 4 | abbii 2807 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)} = {𝑥 ∣ ⊥} |
6 | 1, 2, 5 | 3eqtri 2767 | 1 ⊢ ∅ = {𝑥 ∣ ⊥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ⊥wfal 1549 ∈ wcel 2106 {cab 2712 Vcvv 3478 ∖ cdif 3960 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-dif 3966 df-nul 4340 |
This theorem is referenced by: dfnul2 4342 dfnul3 4343 noel 4344 vn0 4351 eq0 4356 ab0w 4385 ab0 4386 abf 4412 eq0rdv 4413 rzal 4515 ralf0 4520 |
Copyright terms: Public domain | W3C validator |