MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnul4 Structured version   Visualization version   GIF version

Theorem dfnul4 4310
Description: Alternate definition of the empty class/set. (Contributed by BJ, 30-Nov-2019.) Avoid ax-8 2110, df-clel 2809. (Revised by GG, 3-Sep-2024.) Prove directly from definition to allow shortening dfnul2 4311. (Revised by BJ, 23-Sep-2024.)
Assertion
Ref Expression
dfnul4 ∅ = {𝑥 ∣ ⊥}

Proof of Theorem dfnul4
StepHypRef Expression
1 df-nul 4309 . 2 ∅ = (V ∖ V)
2 df-dif 3929 . 2 (V ∖ V) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)}
3 pm3.24 402 . . . 4 ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)
43bifal 1556 . . 3 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ⊥)
54abbii 2802 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)} = {𝑥 ∣ ⊥}
61, 2, 53eqtri 2762 1 ∅ = {𝑥 ∣ ⊥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wfal 1552  wcel 2108  {cab 2713  Vcvv 3459  cdif 3923  c0 4308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-dif 3929  df-nul 4309
This theorem is referenced by:  dfnul2  4311  dfnul3  4312  noel  4313  vn0  4320  eq0  4325  ab0w  4354  ab0  4355  abf  4381  eq0rdv  4382  rzal  4484  ralf0  4489
  Copyright terms: Public domain W3C validator