MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnul4 Structured version   Visualization version   GIF version

Theorem dfnul4 4341
Description: Alternate definition of the empty class/set. (Contributed by BJ, 30-Nov-2019.) Avoid ax-8 2108, df-clel 2814. (Revised by GG, 3-Sep-2024.) Prove directly from definition to allow shortening dfnul2 4342. (Revised by BJ, 23-Sep-2024.)
Assertion
Ref Expression
dfnul4 ∅ = {𝑥 ∣ ⊥}

Proof of Theorem dfnul4
StepHypRef Expression
1 df-nul 4340 . 2 ∅ = (V ∖ V)
2 df-dif 3966 . 2 (V ∖ V) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)}
3 pm3.24 402 . . . 4 ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)
43bifal 1553 . . 3 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ⊥)
54abbii 2807 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)} = {𝑥 ∣ ⊥}
61, 2, 53eqtri 2767 1 ∅ = {𝑥 ∣ ⊥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wfal 1549  wcel 2106  {cab 2712  Vcvv 3478  cdif 3960  c0 4339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-dif 3966  df-nul 4340
This theorem is referenced by:  dfnul2  4342  dfnul3  4343  noel  4344  vn0  4351  eq0  4356  ab0w  4385  ab0  4386  abf  4412  eq0rdv  4413  rzal  4515  ralf0  4520
  Copyright terms: Public domain W3C validator