MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnul4 Structured version   Visualization version   GIF version

Theorem dfnul4 4282
Description: Alternate definition of the empty class/set. (Contributed by BJ, 30-Nov-2019.) Avoid ax-8 2113, df-clel 2806. (Revised by GG, 3-Sep-2024.) Prove directly from definition to allow shortening dfnul2 4283. (Revised by BJ, 23-Sep-2024.)
Assertion
Ref Expression
dfnul4 ∅ = {𝑥 ∣ ⊥}

Proof of Theorem dfnul4
StepHypRef Expression
1 df-nul 4281 . 2 ∅ = (V ∖ V)
2 df-dif 3900 . 2 (V ∖ V) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)}
3 pm3.24 402 . . . 4 ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)
43bifal 1557 . . 3 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ⊥)
54abbii 2798 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)} = {𝑥 ∣ ⊥}
61, 2, 53eqtri 2758 1 ∅ = {𝑥 ∣ ⊥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wfal 1553  wcel 2111  {cab 2709  Vcvv 3436  cdif 3894  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-dif 3900  df-nul 4281
This theorem is referenced by:  dfnul2  4283  dfnul3  4284  noel  4285  vn0  4292  eq0  4297  ab0w  4326  ab0  4327  abf  4353  eq0rdv  4354  rzal  4456  ralf0  4461
  Copyright terms: Public domain W3C validator