| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfnul4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the empty class/set. (Contributed by BJ, 30-Nov-2019.) Avoid ax-8 2113, df-clel 2806. (Revised by GG, 3-Sep-2024.) Prove directly from definition to allow shortening dfnul2 4283. (Revised by BJ, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| dfnul4 | ⊢ ∅ = {𝑥 ∣ ⊥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nul 4281 | . 2 ⊢ ∅ = (V ∖ V) | |
| 2 | df-dif 3900 | . 2 ⊢ (V ∖ V) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)} | |
| 3 | pm3.24 402 | . . . 4 ⊢ ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) | |
| 4 | 3 | bifal 1557 | . . 3 ⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ⊥) |
| 5 | 4 | abbii 2798 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)} = {𝑥 ∣ ⊥} |
| 6 | 1, 2, 5 | 3eqtri 2758 | 1 ⊢ ∅ = {𝑥 ∣ ⊥} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ⊥wfal 1553 ∈ wcel 2111 {cab 2709 Vcvv 3436 ∖ cdif 3894 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: dfnul2 4283 dfnul3 4284 noel 4285 vn0 4292 eq0 4297 ab0w 4326 ab0 4327 abf 4353 eq0rdv 4354 rzal 4456 ralf0 4461 |
| Copyright terms: Public domain | W3C validator |