MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnul4 Structured version   Visualization version   GIF version

Theorem dfnul4 4324
Description: Alternate definition of the empty class/set. (Contributed by BJ, 30-Nov-2019.) Avoid ax-8 2107, df-clel 2809. (Revised by Gino Giotto, 3-Sep-2024.) Prove directly from definition to allow shortening dfnul2 4325. (Revised by BJ, 23-Sep-2024.)
Assertion
Ref Expression
dfnul4 ∅ = {𝑥 ∣ ⊥}

Proof of Theorem dfnul4
StepHypRef Expression
1 df-nul 4323 . 2 ∅ = (V ∖ V)
2 df-dif 3951 . 2 (V ∖ V) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)}
3 pm3.24 402 . . . 4 ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)
43bifal 1556 . . 3 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ⊥)
54abbii 2801 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)} = {𝑥 ∣ ⊥}
61, 2, 53eqtri 2763 1 ∅ = {𝑥 ∣ ⊥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wfal 1552  wcel 2105  {cab 2708  Vcvv 3473  cdif 3945  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-dif 3951  df-nul 4323
This theorem is referenced by:  dfnul2  4325  dfnul3  4326  noel  4330  vn0  4338  eq0  4343  ab0w  4373  ab0  4374  ab0OLD  4375  abf  4402  eq0rdv  4404  rzal  4508  ralf0  4513
  Copyright terms: Public domain W3C validator