MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unjust Structured version   Visualization version   GIF version

Theorem unjust 3953
Description: Soundness justification theorem for df-un 3954. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
unjust {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑦,𝐵

Proof of Theorem unjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2814 . . . 4 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 eleq1w 2814 . . . 4 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
31, 2orbi12d 915 . . 3 (𝑥 = 𝑧 → ((𝑥𝐴𝑥𝐵) ↔ (𝑧𝐴𝑧𝐵)))
43cbvabv 2803 . 2 {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑧 ∣ (𝑧𝐴𝑧𝐵)}
5 eleq1w 2814 . . . 4 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
6 eleq1w 2814 . . . 4 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
75, 6orbi12d 915 . . 3 (𝑧 = 𝑦 → ((𝑧𝐴𝑧𝐵) ↔ (𝑦𝐴𝑦𝐵)))
87cbvabv 2803 . 2 {𝑧 ∣ (𝑧𝐴𝑧𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
94, 8eqtri 2758 1 {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wo 843   = wceq 1539  wcel 2104  {cab 2707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator