![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdif2 | Structured version Visualization version GIF version |
Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.) |
Ref | Expression |
---|---|
dfdif2 | ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dif 3965 | . 2 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} | |
2 | df-rab 3433 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} | |
3 | 1, 2 | eqtr4i 2765 | 1 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {cab 2711 {crab 3432 ∖ cdif 3959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-rab 3433 df-dif 3965 |
This theorem is referenced by: dfdif3 4126 dfdif3OLD 4127 difeq1 4128 difeq2 4129 nfdifOLD 4139 difid 4381 ordintdif 6435 kmlem3 10190 incexc2 15870 cnambfre 37654 alephiso3 43548 sqrtcvallem1 43620 |
Copyright terms: Public domain | W3C validator |