MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdif2 Structured version   Visualization version   GIF version

Theorem dfdif2 3906
Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
dfdif2 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfdif2
StepHypRef Expression
1 df-dif 3900 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
2 df-rab 3396 . 2 {𝑥𝐴 ∣ ¬ 𝑥𝐵} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
31, 2eqtr4i 2757 1 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2111  {cab 2709  {crab 3395  cdif 3894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-rab 3396  df-dif 3900
This theorem is referenced by:  dfdif3  4064  dfdif3OLD  4065  difeq1  4066  difeq2  4067  nfdifOLD  4077  difid  4323  ordintdif  6357  kmlem3  10044  incexc2  15745  cnambfre  37718  alephiso3  43662  sqrtcvallem1  43734
  Copyright terms: Public domain W3C validator