MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdif2 Structured version   Visualization version   GIF version

Theorem dfdif2 3920
Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
dfdif2 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfdif2
StepHypRef Expression
1 df-dif 3914 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
2 df-rab 3403 . 2 {𝑥𝐴 ∣ ¬ 𝑥𝐵} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
31, 2eqtr4i 2755 1 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  {cab 2707  {crab 3402  cdif 3908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-rab 3403  df-dif 3914
This theorem is referenced by:  dfdif3  4076  dfdif3OLD  4077  difeq1  4078  difeq2  4079  nfdifOLD  4089  difid  4335  ordintdif  6371  kmlem3  10082  incexc2  15780  cnambfre  37635  alephiso3  43521  sqrtcvallem1  43593
  Copyright terms: Public domain W3C validator