| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfdif2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| dfdif2 | ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dif 3929 | . 2 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} | |
| 2 | df-rab 3416 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} | |
| 3 | 1, 2 | eqtr4i 2761 | 1 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 {crab 3415 ∖ cdif 3923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-rab 3416 df-dif 3929 |
| This theorem is referenced by: dfdif3 4092 dfdif3OLD 4093 difeq1 4094 difeq2 4095 nfdifOLD 4105 difid 4351 ordintdif 6403 kmlem3 10165 incexc2 15852 cnambfre 37638 alephiso3 43530 sqrtcvallem1 43602 |
| Copyright terms: Public domain | W3C validator |