MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdif2 Structured version   Visualization version   GIF version

Theorem dfdif2 3896
Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
dfdif2 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfdif2
StepHypRef Expression
1 df-dif 3890 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
2 df-rab 3073 . 2 {𝑥𝐴 ∣ ¬ 𝑥𝐵} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
31, 2eqtr4i 2769 1 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1539  wcel 2106  {cab 2715  {crab 3068  cdif 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-rab 3073  df-dif 3890
This theorem is referenced by:  dfdif3  4049  difeq1  4050  difeq2  4051  nfdif  4060  difid  4304  ordintdif  6315  kmlem3  9908  incexc2  15550  cnambfre  35825  alephiso3  41166  sqrtcvallem1  41239
  Copyright terms: Public domain W3C validator