![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdif2 | Structured version Visualization version GIF version |
Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.) |
Ref | Expression |
---|---|
dfdif2 | ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dif 3918 | . 2 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} | |
2 | df-rab 3411 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} | |
3 | 1, 2 | eqtr4i 2768 | 1 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2714 {crab 3410 ∖ cdif 3912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2729 df-rab 3411 df-dif 3918 |
This theorem is referenced by: dfdif3 4079 difeq1 4080 difeq2 4081 nfdif 4090 difid 4335 ordintdif 6372 kmlem3 10095 incexc2 15730 cnambfre 36155 alephiso3 41905 sqrtcvallem1 41977 |
Copyright terms: Public domain | W3C validator |