Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreleq Structured version   Visualization version   GIF version

Theorem eqvreleq 37472
Description: Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
eqvreleq (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆))

Proof of Theorem eqvreleq
StepHypRef Expression
1 refreleq 37391 . . 3 (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆))
2 symreleq 37428 . . 3 (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆))
3 trreleq 37452 . . 3 (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆))
41, 2, 33anbi123d 1437 . 2 (𝑅 = 𝑆 → (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) ↔ ( RefRel 𝑆 ∧ SymRel 𝑆 ∧ TrRel 𝑆)))
5 df-eqvrel 37455 . 2 ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅))
6 df-eqvrel 37455 . 2 ( EqvRel 𝑆 ↔ ( RefRel 𝑆 ∧ SymRel 𝑆 ∧ TrRel 𝑆))
74, 5, 63bitr4g 314 1 (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088   = wceq 1542   RefRel wrefrel 37049   SymRel wsymrel 37055   TrRel wtrrel 37058   EqvRel weqvrel 37060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-refrel 37382  df-symrel 37414  df-trrel 37444  df-eqvrel 37455
This theorem is referenced by:  eqvreleqi  37473  eqvreleqd  37474  erALTVeq1  37539
  Copyright terms: Public domain W3C validator