Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreleq Structured version   Visualization version   GIF version

Theorem eqvreleq 38639
Description: Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
eqvreleq (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆))

Proof of Theorem eqvreleq
StepHypRef Expression
1 refreleq 38558 . . 3 (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆))
2 symreleq 38595 . . 3 (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆))
3 trreleq 38619 . . 3 (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆))
41, 2, 33anbi123d 1438 . 2 (𝑅 = 𝑆 → (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) ↔ ( RefRel 𝑆 ∧ SymRel 𝑆 ∧ TrRel 𝑆)))
5 df-eqvrel 38622 . 2 ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅))
6 df-eqvrel 38622 . 2 ( EqvRel 𝑆 ↔ ( RefRel 𝑆 ∧ SymRel 𝑆 ∧ TrRel 𝑆))
74, 5, 63bitr4g 314 1 (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541   RefRel wrefrel 38221   SymRel wsymrel 38227   TrRel wtrrel 38230   EqvRel weqvrel 38232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-refrel 38549  df-symrel 38581  df-trrel 38611  df-eqvrel 38622
This theorem is referenced by:  eqvreleqi  38640  eqvreleqd  38641  erALTVeq1  38707
  Copyright terms: Public domain W3C validator