| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreleq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| eqvreleq | ⊢ (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refreleq 38686 | . . 3 ⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) | |
| 2 | symreleq 38727 | . . 3 ⊢ (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆)) | |
| 3 | trreleq 38751 | . . 3 ⊢ (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆)) | |
| 4 | 1, 2, 3 | 3anbi123d 1438 | . 2 ⊢ (𝑅 = 𝑆 → (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) ↔ ( RefRel 𝑆 ∧ SymRel 𝑆 ∧ TrRel 𝑆))) |
| 5 | df-eqvrel 38754 | . 2 ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) | |
| 6 | df-eqvrel 38754 | . 2 ⊢ ( EqvRel 𝑆 ↔ ( RefRel 𝑆 ∧ SymRel 𝑆 ∧ TrRel 𝑆)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 RefRel wrefrel 38301 SymRel wsymrel 38307 TrRel wtrrel 38310 EqvRel weqvrel 38312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-refrel 38677 df-symrel 38709 df-trrel 38743 df-eqvrel 38754 |
| This theorem is referenced by: eqvreleqi 38772 eqvreleqd 38773 erALTVeq1 38840 |
| Copyright terms: Public domain | W3C validator |