MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-er Structured version   Visualization version   GIF version

Definition df-er 8763
Description: Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 8764 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref 8783, ersymb 8777, and ertr 8778. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 2-Nov-2015.)
Assertion
Ref Expression
df-er (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))

Detailed syntax breakdown of Definition df-er
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wer 8760 . 2 wff 𝑅 Er 𝐴
42wrel 5705 . . 3 wff Rel 𝑅
52cdm 5700 . . . 4 class dom 𝑅
65, 1wceq 1537 . . 3 wff dom 𝑅 = 𝐴
72ccnv 5699 . . . . 5 class 𝑅
82, 2ccom 5704 . . . . 5 class (𝑅𝑅)
97, 8cun 3974 . . . 4 class (𝑅 ∪ (𝑅𝑅))
109, 2wss 3976 . . 3 wff (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅
114, 6, 10w3a 1087 . 2 wff (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
123, 11wb 206 1 wff (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
Colors of variables: wff setvar class
This definition is referenced by:  dfer2  8764  ereq1  8770  ereq2  8771  errel  8772  erdm  8773  ersym  8775  ertr  8778  xpider  8846  fcoinver  32626
  Copyright terms: Public domain W3C validator