MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-er Structured version   Visualization version   GIF version

Definition df-er 8456
Description: Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 8457 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref 8476, ersymb 8470, and ertr 8471. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 2-Nov-2015.)
Assertion
Ref Expression
df-er (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))

Detailed syntax breakdown of Definition df-er
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wer 8453 . 2 wff 𝑅 Er 𝐴
42wrel 5585 . . 3 wff Rel 𝑅
52cdm 5580 . . . 4 class dom 𝑅
65, 1wceq 1539 . . 3 wff dom 𝑅 = 𝐴
72ccnv 5579 . . . . 5 class 𝑅
82, 2ccom 5584 . . . . 5 class (𝑅𝑅)
97, 8cun 3881 . . . 4 class (𝑅 ∪ (𝑅𝑅))
109, 2wss 3883 . . 3 wff (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅
114, 6, 10w3a 1085 . 2 wff (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
123, 11wb 205 1 wff (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
Colors of variables: wff setvar class
This definition is referenced by:  dfer2  8457  ereq1  8463  ereq2  8464  errel  8465  erdm  8466  ersym  8468  ertr  8471  xpider  8535  fcoinver  30847
  Copyright terms: Public domain W3C validator