MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-er Structured version   Visualization version   GIF version

Definition df-er 8391
Description: Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 8392 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref 8411, ersymb 8405, and ertr 8406. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 2-Nov-2015.)
Assertion
Ref Expression
df-er (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))

Detailed syntax breakdown of Definition df-er
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wer 8388 . 2 wff 𝑅 Er 𝐴
42wrel 5556 . . 3 wff Rel 𝑅
52cdm 5551 . . . 4 class dom 𝑅
65, 1wceq 1543 . . 3 wff dom 𝑅 = 𝐴
72ccnv 5550 . . . . 5 class 𝑅
82, 2ccom 5555 . . . . 5 class (𝑅𝑅)
97, 8cun 3864 . . . 4 class (𝑅 ∪ (𝑅𝑅))
109, 2wss 3866 . . 3 wff (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅
114, 6, 10w3a 1089 . 2 wff (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
123, 11wb 209 1 wff (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
Colors of variables: wff setvar class
This definition is referenced by:  dfer2  8392  ereq1  8398  ereq2  8399  errel  8400  erdm  8401  ersym  8403  ertr  8406  xpider  8470  fcoinver  30665
  Copyright terms: Public domain W3C validator