Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-er | Structured version Visualization version GIF version |
Description: Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 8392 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref 8411, ersymb 8405, and ertr 8406. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 2-Nov-2015.) |
Ref | Expression |
---|---|
df-er | ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wer 8388 | . 2 wff 𝑅 Er 𝐴 |
4 | 2 | wrel 5556 | . . 3 wff Rel 𝑅 |
5 | 2 | cdm 5551 | . . . 4 class dom 𝑅 |
6 | 5, 1 | wceq 1543 | . . 3 wff dom 𝑅 = 𝐴 |
7 | 2 | ccnv 5550 | . . . . 5 class ◡𝑅 |
8 | 2, 2 | ccom 5555 | . . . . 5 class (𝑅 ∘ 𝑅) |
9 | 7, 8 | cun 3864 | . . . 4 class (◡𝑅 ∪ (𝑅 ∘ 𝑅)) |
10 | 9, 2 | wss 3866 | . . 3 wff (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅 |
11 | 4, 6, 10 | w3a 1089 | . 2 wff (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) |
12 | 3, 11 | wb 209 | 1 wff (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfer2 8392 ereq1 8398 ereq2 8399 errel 8400 erdm 8401 ersym 8403 ertr 8406 xpider 8470 fcoinver 30665 |
Copyright terms: Public domain | W3C validator |