Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ersymb | Structured version Visualization version GIF version |
Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
Ref | Expression |
---|---|
ersymb | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersymb.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝑅 Er 𝑋) |
3 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
4 | 2, 3 | ersym 8510 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐵𝑅𝐴) |
5 | 1 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → 𝑅 Er 𝑋) |
6 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → 𝐵𝑅𝐴) | |
7 | 5, 6 | ersym 8510 | . 2 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → 𝐴𝑅𝐵) |
8 | 4, 7 | impbida 798 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 class class class wbr 5074 Er wer 8495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-er 8498 |
This theorem is referenced by: ercnv 8519 erth 8547 erth2 8548 iiner 8578 ensymb 8788 |
Copyright terms: Public domain | W3C validator |