![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ersymb | Structured version Visualization version GIF version |
Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
Ref | Expression |
---|---|
ersymb | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersymb.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝑅 Er 𝑋) |
3 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
4 | 2, 3 | ersym 8775 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐵𝑅𝐴) |
5 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → 𝑅 Er 𝑋) |
6 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → 𝐵𝑅𝐴) | |
7 | 5, 6 | ersym 8775 | . 2 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → 𝐴𝑅𝐵) |
8 | 4, 7 | impbida 800 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 class class class wbr 5166 Er wer 8760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-er 8763 |
This theorem is referenced by: ercnv 8784 erth 8814 erth2 8815 iiner 8847 ensymb 9062 |
Copyright terms: Public domain | W3C validator |