MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ersymb Structured version   Visualization version   GIF version

Theorem ersymb 8777
Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
Assertion
Ref Expression
ersymb (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem ersymb
StepHypRef Expression
1 ersymb.1 . . . 4 (𝜑𝑅 Er 𝑋)
21adantr 480 . . 3 ((𝜑𝐴𝑅𝐵) → 𝑅 Er 𝑋)
3 simpr 484 . . 3 ((𝜑𝐴𝑅𝐵) → 𝐴𝑅𝐵)
42, 3ersym 8775 . 2 ((𝜑𝐴𝑅𝐵) → 𝐵𝑅𝐴)
51adantr 480 . . 3 ((𝜑𝐵𝑅𝐴) → 𝑅 Er 𝑋)
6 simpr 484 . . 3 ((𝜑𝐵𝑅𝐴) → 𝐵𝑅𝐴)
75, 6ersym 8775 . 2 ((𝜑𝐵𝑅𝐴) → 𝐴𝑅𝐵)
84, 7impbida 800 1 (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   class class class wbr 5166   Er wer 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-er 8763
This theorem is referenced by:  ercnv  8784  erth  8814  erth2  8815  iiner  8847  ensymb  9062
  Copyright terms: Public domain W3C validator