Proof of Theorem xpider
Step | Hyp | Ref
| Expression |
1 | | relxp 5598 |
. 2
⊢ Rel
(𝐴 × 𝐴) |
2 | | dmxpid 5828 |
. 2
⊢ dom
(𝐴 × 𝐴) = 𝐴 |
3 | | cnvxp 6049 |
. . 3
⊢ ◡(𝐴 × 𝐴) = (𝐴 × 𝐴) |
4 | | xpidtr 6016 |
. . 3
⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
5 | | uneq1 4086 |
. . . 4
⊢ (◡(𝐴 × 𝐴) = (𝐴 × 𝐴) → (◡(𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴))) |
6 | | unss2 4111 |
. . . 4
⊢ (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → (◡(𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (◡(𝐴 × 𝐴) ∪ (𝐴 × 𝐴))) |
7 | | unidm 4082 |
. . . . 5
⊢ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴) |
8 | | eqtr 2761 |
. . . . . 6
⊢ (((◡(𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ∧ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) → (◡(𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) |
9 | | sseq2 3943 |
. . . . . . 7
⊢ ((◡(𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴) → ((◡(𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (◡(𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ↔ (◡(𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴))) |
10 | 9 | biimpd 228 |
. . . . . 6
⊢ ((◡(𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴) → ((◡(𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (◡(𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → (◡(𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴))) |
11 | 8, 10 | syl 17 |
. . . . 5
⊢ (((◡(𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ∧ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) → ((◡(𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (◡(𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → (◡(𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴))) |
12 | 7, 11 | mpan2 687 |
. . . 4
⊢ ((◡(𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → ((◡(𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (◡(𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → (◡(𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴))) |
13 | 5, 6, 12 | syl2im 40 |
. . 3
⊢ (◡(𝐴 × 𝐴) = (𝐴 × 𝐴) → (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → (◡(𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴))) |
14 | 3, 4, 13 | mp2 9 |
. 2
⊢ (◡(𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴) |
15 | | df-er 8456 |
. 2
⊢ ((𝐴 × 𝐴) Er 𝐴 ↔ (Rel (𝐴 × 𝐴) ∧ dom (𝐴 × 𝐴) = 𝐴 ∧ (◡(𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴))) |
16 | 1, 2, 14, 15 | mpbir3an 1339 |
1
⊢ (𝐴 × 𝐴) Er 𝐴 |