Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoinver Structured version   Visualization version   GIF version

Theorem fcoinver 32617
Description: Build an equivalence relation from a function. Two values are equivalent if they have the same image by the function. See also fcoinvbr 32618. (Contributed by Thierry Arnoux, 3-Jan-2020.)
Assertion
Ref Expression
fcoinver (𝐹 Fn 𝑋 → (𝐹𝐹) Er 𝑋)

Proof of Theorem fcoinver
StepHypRef Expression
1 relco 6126 . . 3 Rel (𝐹𝐹)
21a1i 11 . 2 (𝐹 Fn 𝑋 → Rel (𝐹𝐹))
3 dmco 6274 . . 3 dom (𝐹𝐹) = (𝐹 “ dom 𝐹)
4 df-rn 5696 . . . . 5 ran 𝐹 = dom 𝐹
54imaeq2i 6076 . . . 4 (𝐹 “ ran 𝐹) = (𝐹 “ dom 𝐹)
6 cnvimarndm 6101 . . . . 5 (𝐹 “ ran 𝐹) = dom 𝐹
7 fndm 6671 . . . . 5 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
86, 7eqtrid 2789 . . . 4 (𝐹 Fn 𝑋 → (𝐹 “ ran 𝐹) = 𝑋)
95, 8eqtr3id 2791 . . 3 (𝐹 Fn 𝑋 → (𝐹 “ dom 𝐹) = 𝑋)
103, 9eqtrid 2789 . 2 (𝐹 Fn 𝑋 → dom (𝐹𝐹) = 𝑋)
11 cnvco 5896 . . . . 5 (𝐹𝐹) = (𝐹𝐹)
12 cnvcnvss 6214 . . . . . 6 𝐹𝐹
13 coss2 5867 . . . . . 6 (𝐹𝐹 → (𝐹𝐹) ⊆ (𝐹𝐹))
1412, 13ax-mp 5 . . . . 5 (𝐹𝐹) ⊆ (𝐹𝐹)
1511, 14eqsstri 4030 . . . 4 (𝐹𝐹) ⊆ (𝐹𝐹)
1615a1i 11 . . 3 (𝐹 Fn 𝑋(𝐹𝐹) ⊆ (𝐹𝐹))
17 coass 6285 . . . . 5 ((𝐹𝐹) ∘ (𝐹𝐹)) = (𝐹 ∘ (𝐹 ∘ (𝐹𝐹)))
18 coass 6285 . . . . . . 7 ((𝐹𝐹) ∘ 𝐹) = (𝐹 ∘ (𝐹𝐹))
19 fnfun 6668 . . . . . . . . . 10 (𝐹 Fn 𝑋 → Fun 𝐹)
20 funcocnv2 6873 . . . . . . . . . 10 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
2119, 20syl 17 . . . . . . . . 9 (𝐹 Fn 𝑋 → (𝐹𝐹) = ( I ↾ ran 𝐹))
2221coeq1d 5872 . . . . . . . 8 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ 𝐹) = (( I ↾ ran 𝐹) ∘ 𝐹))
23 dffn3 6748 . . . . . . . . 9 (𝐹 Fn 𝑋𝐹:𝑋⟶ran 𝐹)
24 fcoi2 6783 . . . . . . . . 9 (𝐹:𝑋⟶ran 𝐹 → (( I ↾ ran 𝐹) ∘ 𝐹) = 𝐹)
2523, 24sylbi 217 . . . . . . . 8 (𝐹 Fn 𝑋 → (( I ↾ ran 𝐹) ∘ 𝐹) = 𝐹)
2622, 25eqtrd 2777 . . . . . . 7 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ 𝐹) = 𝐹)
2718, 26eqtr3id 2791 . . . . . 6 (𝐹 Fn 𝑋 → (𝐹 ∘ (𝐹𝐹)) = 𝐹)
2827coeq2d 5873 . . . . 5 (𝐹 Fn 𝑋 → (𝐹 ∘ (𝐹 ∘ (𝐹𝐹))) = (𝐹𝐹))
2917, 28eqtrid 2789 . . . 4 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ (𝐹𝐹)) = (𝐹𝐹))
30 ssid 4006 . . . 4 (𝐹𝐹) ⊆ (𝐹𝐹)
3129, 30eqsstrdi 4028 . . 3 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ (𝐹𝐹)) ⊆ (𝐹𝐹))
3216, 31unssd 4192 . 2 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∪ ((𝐹𝐹) ∘ (𝐹𝐹))) ⊆ (𝐹𝐹))
33 df-er 8745 . 2 ((𝐹𝐹) Er 𝑋 ↔ (Rel (𝐹𝐹) ∧ dom (𝐹𝐹) = 𝑋 ∧ ((𝐹𝐹) ∪ ((𝐹𝐹) ∘ (𝐹𝐹))) ⊆ (𝐹𝐹)))
342, 10, 32, 33syl3anbrc 1344 1 (𝐹 Fn 𝑋 → (𝐹𝐹) Er 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3949  wss 3951   I cid 5577  ccnv 5684  dom cdm 5685  ran crn 5686  cres 5687  cima 5688  ccom 5689  Rel wrel 5690  Fun wfun 6555   Fn wfn 6556  wf 6557   Er wer 8742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-fun 6563  df-fn 6564  df-f 6565  df-er 8745
This theorem is referenced by:  qtophaus  33835
  Copyright terms: Public domain W3C validator