Proof of Theorem fcoinver
| Step | Hyp | Ref
| Expression |
| 1 | | relco 6126 |
. . 3
⊢ Rel
(◡𝐹 ∘ 𝐹) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝐹 Fn 𝑋 → Rel (◡𝐹 ∘ 𝐹)) |
| 3 | | dmco 6274 |
. . 3
⊢ dom
(◡𝐹 ∘ 𝐹) = (◡𝐹 “ dom ◡𝐹) |
| 4 | | df-rn 5696 |
. . . . 5
⊢ ran 𝐹 = dom ◡𝐹 |
| 5 | 4 | imaeq2i 6076 |
. . . 4
⊢ (◡𝐹 “ ran 𝐹) = (◡𝐹 “ dom ◡𝐹) |
| 6 | | cnvimarndm 6101 |
. . . . 5
⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 |
| 7 | | fndm 6671 |
. . . . 5
⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) |
| 8 | 6, 7 | eqtrid 2789 |
. . . 4
⊢ (𝐹 Fn 𝑋 → (◡𝐹 “ ran 𝐹) = 𝑋) |
| 9 | 5, 8 | eqtr3id 2791 |
. . 3
⊢ (𝐹 Fn 𝑋 → (◡𝐹 “ dom ◡𝐹) = 𝑋) |
| 10 | 3, 9 | eqtrid 2789 |
. 2
⊢ (𝐹 Fn 𝑋 → dom (◡𝐹 ∘ 𝐹) = 𝑋) |
| 11 | | cnvco 5896 |
. . . . 5
⊢ ◡(◡𝐹 ∘ 𝐹) = (◡𝐹 ∘ ◡◡𝐹) |
| 12 | | cnvcnvss 6214 |
. . . . . 6
⊢ ◡◡𝐹 ⊆ 𝐹 |
| 13 | | coss2 5867 |
. . . . . 6
⊢ (◡◡𝐹 ⊆ 𝐹 → (◡𝐹 ∘ ◡◡𝐹) ⊆ (◡𝐹 ∘ 𝐹)) |
| 14 | 12, 13 | ax-mp 5 |
. . . . 5
⊢ (◡𝐹 ∘ ◡◡𝐹) ⊆ (◡𝐹 ∘ 𝐹) |
| 15 | 11, 14 | eqsstri 4030 |
. . . 4
⊢ ◡(◡𝐹 ∘ 𝐹) ⊆ (◡𝐹 ∘ 𝐹) |
| 16 | 15 | a1i 11 |
. . 3
⊢ (𝐹 Fn 𝑋 → ◡(◡𝐹 ∘ 𝐹) ⊆ (◡𝐹 ∘ 𝐹)) |
| 17 | | coass 6285 |
. . . . 5
⊢ ((◡𝐹 ∘ 𝐹) ∘ (◡𝐹 ∘ 𝐹)) = (◡𝐹 ∘ (𝐹 ∘ (◡𝐹 ∘ 𝐹))) |
| 18 | | coass 6285 |
. . . . . . 7
⊢ ((𝐹 ∘ ◡𝐹) ∘ 𝐹) = (𝐹 ∘ (◡𝐹 ∘ 𝐹)) |
| 19 | | fnfun 6668 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝑋 → Fun 𝐹) |
| 20 | | funcocnv2 6873 |
. . . . . . . . . 10
⊢ (Fun
𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝑋 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
| 22 | 21 | coeq1d 5872 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑋 → ((𝐹 ∘ ◡𝐹) ∘ 𝐹) = (( I ↾ ran 𝐹) ∘ 𝐹)) |
| 23 | | dffn3 6748 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋⟶ran 𝐹) |
| 24 | | fcoi2 6783 |
. . . . . . . . 9
⊢ (𝐹:𝑋⟶ran 𝐹 → (( I ↾ ran 𝐹) ∘ 𝐹) = 𝐹) |
| 25 | 23, 24 | sylbi 217 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑋 → (( I ↾ ran 𝐹) ∘ 𝐹) = 𝐹) |
| 26 | 22, 25 | eqtrd 2777 |
. . . . . . 7
⊢ (𝐹 Fn 𝑋 → ((𝐹 ∘ ◡𝐹) ∘ 𝐹) = 𝐹) |
| 27 | 18, 26 | eqtr3id 2791 |
. . . . . 6
⊢ (𝐹 Fn 𝑋 → (𝐹 ∘ (◡𝐹 ∘ 𝐹)) = 𝐹) |
| 28 | 27 | coeq2d 5873 |
. . . . 5
⊢ (𝐹 Fn 𝑋 → (◡𝐹 ∘ (𝐹 ∘ (◡𝐹 ∘ 𝐹))) = (◡𝐹 ∘ 𝐹)) |
| 29 | 17, 28 | eqtrid 2789 |
. . . 4
⊢ (𝐹 Fn 𝑋 → ((◡𝐹 ∘ 𝐹) ∘ (◡𝐹 ∘ 𝐹)) = (◡𝐹 ∘ 𝐹)) |
| 30 | | ssid 4006 |
. . . 4
⊢ (◡𝐹 ∘ 𝐹) ⊆ (◡𝐹 ∘ 𝐹) |
| 31 | 29, 30 | eqsstrdi 4028 |
. . 3
⊢ (𝐹 Fn 𝑋 → ((◡𝐹 ∘ 𝐹) ∘ (◡𝐹 ∘ 𝐹)) ⊆ (◡𝐹 ∘ 𝐹)) |
| 32 | 16, 31 | unssd 4192 |
. 2
⊢ (𝐹 Fn 𝑋 → (◡(◡𝐹 ∘ 𝐹) ∪ ((◡𝐹 ∘ 𝐹) ∘ (◡𝐹 ∘ 𝐹))) ⊆ (◡𝐹 ∘ 𝐹)) |
| 33 | | df-er 8745 |
. 2
⊢ ((◡𝐹 ∘ 𝐹) Er 𝑋 ↔ (Rel (◡𝐹 ∘ 𝐹) ∧ dom (◡𝐹 ∘ 𝐹) = 𝑋 ∧ (◡(◡𝐹 ∘ 𝐹) ∪ ((◡𝐹 ∘ 𝐹) ∘ (◡𝐹 ∘ 𝐹))) ⊆ (◡𝐹 ∘ 𝐹))) |
| 34 | 2, 10, 32, 33 | syl3anbrc 1344 |
1
⊢ (𝐹 Fn 𝑋 → (◡𝐹 ∘ 𝐹) Er 𝑋) |