Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoinver Structured version   Visualization version   GIF version

Theorem fcoinver 32626
Description: Build an equivalence relation from a function. Two values are equivalent if they have the same image by the function. See also fcoinvbr 32627. (Contributed by Thierry Arnoux, 3-Jan-2020.)
Assertion
Ref Expression
fcoinver (𝐹 Fn 𝑋 → (𝐹𝐹) Er 𝑋)

Proof of Theorem fcoinver
StepHypRef Expression
1 relco 6138 . . 3 Rel (𝐹𝐹)
21a1i 11 . 2 (𝐹 Fn 𝑋 → Rel (𝐹𝐹))
3 dmco 6285 . . 3 dom (𝐹𝐹) = (𝐹 “ dom 𝐹)
4 df-rn 5711 . . . . 5 ran 𝐹 = dom 𝐹
54imaeq2i 6087 . . . 4 (𝐹 “ ran 𝐹) = (𝐹 “ dom 𝐹)
6 cnvimarndm 6112 . . . . 5 (𝐹 “ ran 𝐹) = dom 𝐹
7 fndm 6682 . . . . 5 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
86, 7eqtrid 2792 . . . 4 (𝐹 Fn 𝑋 → (𝐹 “ ran 𝐹) = 𝑋)
95, 8eqtr3id 2794 . . 3 (𝐹 Fn 𝑋 → (𝐹 “ dom 𝐹) = 𝑋)
103, 9eqtrid 2792 . 2 (𝐹 Fn 𝑋 → dom (𝐹𝐹) = 𝑋)
11 cnvco 5910 . . . . 5 (𝐹𝐹) = (𝐹𝐹)
12 cnvcnvss 6225 . . . . . 6 𝐹𝐹
13 coss2 5881 . . . . . 6 (𝐹𝐹 → (𝐹𝐹) ⊆ (𝐹𝐹))
1412, 13ax-mp 5 . . . . 5 (𝐹𝐹) ⊆ (𝐹𝐹)
1511, 14eqsstri 4043 . . . 4 (𝐹𝐹) ⊆ (𝐹𝐹)
1615a1i 11 . . 3 (𝐹 Fn 𝑋(𝐹𝐹) ⊆ (𝐹𝐹))
17 coass 6296 . . . . 5 ((𝐹𝐹) ∘ (𝐹𝐹)) = (𝐹 ∘ (𝐹 ∘ (𝐹𝐹)))
18 coass 6296 . . . . . . 7 ((𝐹𝐹) ∘ 𝐹) = (𝐹 ∘ (𝐹𝐹))
19 fnfun 6679 . . . . . . . . . 10 (𝐹 Fn 𝑋 → Fun 𝐹)
20 funcocnv2 6887 . . . . . . . . . 10 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
2119, 20syl 17 . . . . . . . . 9 (𝐹 Fn 𝑋 → (𝐹𝐹) = ( I ↾ ran 𝐹))
2221coeq1d 5886 . . . . . . . 8 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ 𝐹) = (( I ↾ ran 𝐹) ∘ 𝐹))
23 dffn3 6759 . . . . . . . . 9 (𝐹 Fn 𝑋𝐹:𝑋⟶ran 𝐹)
24 fcoi2 6796 . . . . . . . . 9 (𝐹:𝑋⟶ran 𝐹 → (( I ↾ ran 𝐹) ∘ 𝐹) = 𝐹)
2523, 24sylbi 217 . . . . . . . 8 (𝐹 Fn 𝑋 → (( I ↾ ran 𝐹) ∘ 𝐹) = 𝐹)
2622, 25eqtrd 2780 . . . . . . 7 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ 𝐹) = 𝐹)
2718, 26eqtr3id 2794 . . . . . 6 (𝐹 Fn 𝑋 → (𝐹 ∘ (𝐹𝐹)) = 𝐹)
2827coeq2d 5887 . . . . 5 (𝐹 Fn 𝑋 → (𝐹 ∘ (𝐹 ∘ (𝐹𝐹))) = (𝐹𝐹))
2917, 28eqtrid 2792 . . . 4 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ (𝐹𝐹)) = (𝐹𝐹))
30 ssid 4031 . . . 4 (𝐹𝐹) ⊆ (𝐹𝐹)
3129, 30eqsstrdi 4063 . . 3 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ (𝐹𝐹)) ⊆ (𝐹𝐹))
3216, 31unssd 4215 . 2 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∪ ((𝐹𝐹) ∘ (𝐹𝐹))) ⊆ (𝐹𝐹))
33 df-er 8763 . 2 ((𝐹𝐹) Er 𝑋 ↔ (Rel (𝐹𝐹) ∧ dom (𝐹𝐹) = 𝑋 ∧ ((𝐹𝐹) ∪ ((𝐹𝐹) ∘ (𝐹𝐹))) ⊆ (𝐹𝐹)))
342, 10, 32, 33syl3anbrc 1343 1 (𝐹 Fn 𝑋 → (𝐹𝐹) Er 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cun 3974  wss 3976   I cid 5592  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  ccom 5704  Rel wrel 5705  Fun wfun 6567   Fn wfn 6568  wf 6569   Er wer 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-er 8763
This theorem is referenced by:  qtophaus  33782
  Copyright terms: Public domain W3C validator