Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoinver Structured version   Visualization version   GIF version

Theorem fcoinver 32548
Description: Build an equivalence relation from a function. Two values are equivalent if they have the same image by the function. See also fcoinvbr 32549. (Contributed by Thierry Arnoux, 3-Jan-2020.)
Assertion
Ref Expression
fcoinver (𝐹 Fn 𝑋 → (𝐹𝐹) Er 𝑋)

Proof of Theorem fcoinver
StepHypRef Expression
1 relco 6059 . . 3 Rel (𝐹𝐹)
21a1i 11 . 2 (𝐹 Fn 𝑋 → Rel (𝐹𝐹))
3 dmco 6203 . . 3 dom (𝐹𝐹) = (𝐹 “ dom 𝐹)
4 df-rn 5630 . . . . 5 ran 𝐹 = dom 𝐹
54imaeq2i 6009 . . . 4 (𝐹 “ ran 𝐹) = (𝐹 “ dom 𝐹)
6 cnvimarndm 6034 . . . . 5 (𝐹 “ ran 𝐹) = dom 𝐹
7 fndm 6585 . . . . 5 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
86, 7eqtrid 2776 . . . 4 (𝐹 Fn 𝑋 → (𝐹 “ ran 𝐹) = 𝑋)
95, 8eqtr3id 2778 . . 3 (𝐹 Fn 𝑋 → (𝐹 “ dom 𝐹) = 𝑋)
103, 9eqtrid 2776 . 2 (𝐹 Fn 𝑋 → dom (𝐹𝐹) = 𝑋)
11 cnvco 5828 . . . . 5 (𝐹𝐹) = (𝐹𝐹)
12 cnvcnvss 6143 . . . . . 6 𝐹𝐹
13 coss2 5799 . . . . . 6 (𝐹𝐹 → (𝐹𝐹) ⊆ (𝐹𝐹))
1412, 13ax-mp 5 . . . . 5 (𝐹𝐹) ⊆ (𝐹𝐹)
1511, 14eqsstri 3982 . . . 4 (𝐹𝐹) ⊆ (𝐹𝐹)
1615a1i 11 . . 3 (𝐹 Fn 𝑋(𝐹𝐹) ⊆ (𝐹𝐹))
17 coass 6214 . . . . 5 ((𝐹𝐹) ∘ (𝐹𝐹)) = (𝐹 ∘ (𝐹 ∘ (𝐹𝐹)))
18 coass 6214 . . . . . . 7 ((𝐹𝐹) ∘ 𝐹) = (𝐹 ∘ (𝐹𝐹))
19 fnfun 6582 . . . . . . . . . 10 (𝐹 Fn 𝑋 → Fun 𝐹)
20 funcocnv2 6789 . . . . . . . . . 10 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
2119, 20syl 17 . . . . . . . . 9 (𝐹 Fn 𝑋 → (𝐹𝐹) = ( I ↾ ran 𝐹))
2221coeq1d 5804 . . . . . . . 8 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ 𝐹) = (( I ↾ ran 𝐹) ∘ 𝐹))
23 dffn3 6664 . . . . . . . . 9 (𝐹 Fn 𝑋𝐹:𝑋⟶ran 𝐹)
24 fcoi2 6699 . . . . . . . . 9 (𝐹:𝑋⟶ran 𝐹 → (( I ↾ ran 𝐹) ∘ 𝐹) = 𝐹)
2523, 24sylbi 217 . . . . . . . 8 (𝐹 Fn 𝑋 → (( I ↾ ran 𝐹) ∘ 𝐹) = 𝐹)
2622, 25eqtrd 2764 . . . . . . 7 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ 𝐹) = 𝐹)
2718, 26eqtr3id 2778 . . . . . 6 (𝐹 Fn 𝑋 → (𝐹 ∘ (𝐹𝐹)) = 𝐹)
2827coeq2d 5805 . . . . 5 (𝐹 Fn 𝑋 → (𝐹 ∘ (𝐹 ∘ (𝐹𝐹))) = (𝐹𝐹))
2917, 28eqtrid 2776 . . . 4 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ (𝐹𝐹)) = (𝐹𝐹))
30 ssid 3958 . . . 4 (𝐹𝐹) ⊆ (𝐹𝐹)
3129, 30eqsstrdi 3980 . . 3 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ (𝐹𝐹)) ⊆ (𝐹𝐹))
3216, 31unssd 4143 . 2 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∪ ((𝐹𝐹) ∘ (𝐹𝐹))) ⊆ (𝐹𝐹))
33 df-er 8625 . 2 ((𝐹𝐹) Er 𝑋 ↔ (Rel (𝐹𝐹) ∧ dom (𝐹𝐹) = 𝑋 ∧ ((𝐹𝐹) ∪ ((𝐹𝐹) ∘ (𝐹𝐹))) ⊆ (𝐹𝐹)))
342, 10, 32, 33syl3anbrc 1344 1 (𝐹 Fn 𝑋 → (𝐹𝐹) Er 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3901  wss 3903   I cid 5513  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  ccom 5623  Rel wrel 5624  Fun wfun 6476   Fn wfn 6477  wf 6478   Er wer 8622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486  df-er 8625
This theorem is referenced by:  qtophaus  33809
  Copyright terms: Public domain W3C validator