Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoinver Structured version   Visualization version   GIF version

Theorem fcoinver 32552
Description: Build an equivalence relation from a function. Two values are equivalent if they have the same image by the function. See also fcoinvbr 32553. (Contributed by Thierry Arnoux, 3-Jan-2020.)
Assertion
Ref Expression
fcoinver (𝐹 Fn 𝑋 → (𝐹𝐹) Er 𝑋)

Proof of Theorem fcoinver
StepHypRef Expression
1 relco 6106 . . 3 Rel (𝐹𝐹)
21a1i 11 . 2 (𝐹 Fn 𝑋 → Rel (𝐹𝐹))
3 dmco 6254 . . 3 dom (𝐹𝐹) = (𝐹 “ dom 𝐹)
4 df-rn 5676 . . . . 5 ran 𝐹 = dom 𝐹
54imaeq2i 6056 . . . 4 (𝐹 “ ran 𝐹) = (𝐹 “ dom 𝐹)
6 cnvimarndm 6081 . . . . 5 (𝐹 “ ran 𝐹) = dom 𝐹
7 fndm 6651 . . . . 5 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
86, 7eqtrid 2781 . . . 4 (𝐹 Fn 𝑋 → (𝐹 “ ran 𝐹) = 𝑋)
95, 8eqtr3id 2783 . . 3 (𝐹 Fn 𝑋 → (𝐹 “ dom 𝐹) = 𝑋)
103, 9eqtrid 2781 . 2 (𝐹 Fn 𝑋 → dom (𝐹𝐹) = 𝑋)
11 cnvco 5876 . . . . 5 (𝐹𝐹) = (𝐹𝐹)
12 cnvcnvss 6194 . . . . . 6 𝐹𝐹
13 coss2 5847 . . . . . 6 (𝐹𝐹 → (𝐹𝐹) ⊆ (𝐹𝐹))
1412, 13ax-mp 5 . . . . 5 (𝐹𝐹) ⊆ (𝐹𝐹)
1511, 14eqsstri 4010 . . . 4 (𝐹𝐹) ⊆ (𝐹𝐹)
1615a1i 11 . . 3 (𝐹 Fn 𝑋(𝐹𝐹) ⊆ (𝐹𝐹))
17 coass 6265 . . . . 5 ((𝐹𝐹) ∘ (𝐹𝐹)) = (𝐹 ∘ (𝐹 ∘ (𝐹𝐹)))
18 coass 6265 . . . . . . 7 ((𝐹𝐹) ∘ 𝐹) = (𝐹 ∘ (𝐹𝐹))
19 fnfun 6648 . . . . . . . . . 10 (𝐹 Fn 𝑋 → Fun 𝐹)
20 funcocnv2 6853 . . . . . . . . . 10 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
2119, 20syl 17 . . . . . . . . 9 (𝐹 Fn 𝑋 → (𝐹𝐹) = ( I ↾ ran 𝐹))
2221coeq1d 5852 . . . . . . . 8 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ 𝐹) = (( I ↾ ran 𝐹) ∘ 𝐹))
23 dffn3 6728 . . . . . . . . 9 (𝐹 Fn 𝑋𝐹:𝑋⟶ran 𝐹)
24 fcoi2 6763 . . . . . . . . 9 (𝐹:𝑋⟶ran 𝐹 → (( I ↾ ran 𝐹) ∘ 𝐹) = 𝐹)
2523, 24sylbi 217 . . . . . . . 8 (𝐹 Fn 𝑋 → (( I ↾ ran 𝐹) ∘ 𝐹) = 𝐹)
2622, 25eqtrd 2769 . . . . . . 7 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ 𝐹) = 𝐹)
2718, 26eqtr3id 2783 . . . . . 6 (𝐹 Fn 𝑋 → (𝐹 ∘ (𝐹𝐹)) = 𝐹)
2827coeq2d 5853 . . . . 5 (𝐹 Fn 𝑋 → (𝐹 ∘ (𝐹 ∘ (𝐹𝐹))) = (𝐹𝐹))
2917, 28eqtrid 2781 . . . 4 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ (𝐹𝐹)) = (𝐹𝐹))
30 ssid 3986 . . . 4 (𝐹𝐹) ⊆ (𝐹𝐹)
3129, 30eqsstrdi 4008 . . 3 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∘ (𝐹𝐹)) ⊆ (𝐹𝐹))
3216, 31unssd 4172 . 2 (𝐹 Fn 𝑋 → ((𝐹𝐹) ∪ ((𝐹𝐹) ∘ (𝐹𝐹))) ⊆ (𝐹𝐹))
33 df-er 8727 . 2 ((𝐹𝐹) Er 𝑋 ↔ (Rel (𝐹𝐹) ∧ dom (𝐹𝐹) = 𝑋 ∧ ((𝐹𝐹) ∪ ((𝐹𝐹) ∘ (𝐹𝐹))) ⊆ (𝐹𝐹)))
342, 10, 32, 33syl3anbrc 1343 1 (𝐹 Fn 𝑋 → (𝐹𝐹) Er 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cun 3929  wss 3931   I cid 5557  ccnv 5664  dom cdm 5665  ran crn 5666  cres 5667  cima 5668  ccom 5669  Rel wrel 5670  Fun wfun 6535   Fn wfn 6536  wf 6537   Er wer 8724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-fun 6543  df-fn 6544  df-f 6545  df-er 8727
This theorem is referenced by:  qtophaus  33794
  Copyright terms: Public domain W3C validator