MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  errel Structured version   Visualization version   GIF version

Theorem errel 8772
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errel (𝑅 Er 𝐴 → Rel 𝑅)

Proof of Theorem errel
StepHypRef Expression
1 df-er 8763 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp1bi 1145 1 (𝑅 Er 𝐴 → Rel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cun 3974  wss 3976  ccnv 5699  dom cdm 5700  ccom 5704  Rel wrel 5705   Er wer 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-er 8763
This theorem is referenced by:  ercl  8774  ersym  8775  ertr  8778  ercnv  8784  erssxp  8786  erth  8814  iiner  8847  eqg0el  19223  frgpuplem  19814  qusxpid  33356  ismntop  33972  topfneec  36321  prter3  38838
  Copyright terms: Public domain W3C validator