MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  errel Structured version   Visualization version   GIF version

Theorem errel 8507
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errel (𝑅 Er 𝐴 → Rel 𝑅)

Proof of Theorem errel
StepHypRef Expression
1 df-er 8498 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp1bi 1144 1 (𝑅 Er 𝐴 → Rel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cun 3885  wss 3887  ccnv 5588  dom cdm 5589  ccom 5593  Rel wrel 5594   Er wer 8495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-er 8498
This theorem is referenced by:  ercl  8509  ersym  8510  ertr  8513  ercnv  8519  erssxp  8521  erth  8547  iiner  8578  frgpuplem  19378  eqg0el  31557  qusxpid  31559  ismntop  31976  topfneec  34544  prter3  36896
  Copyright terms: Public domain W3C validator