Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > errel | Structured version Visualization version GIF version |
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
errel | ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 8498 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp1bi 1144 | 1 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ cun 3885 ⊆ wss 3887 ◡ccnv 5588 dom cdm 5589 ∘ ccom 5593 Rel wrel 5594 Er wer 8495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-er 8498 |
This theorem is referenced by: ercl 8509 ersym 8510 ertr 8513 ercnv 8519 erssxp 8521 erth 8547 iiner 8578 frgpuplem 19378 eqg0el 31557 qusxpid 31559 ismntop 31976 topfneec 34544 prter3 36896 |
Copyright terms: Public domain | W3C validator |