MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  errel Structured version   Visualization version   GIF version

Theorem errel 8680
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errel (𝑅 Er 𝐴 → Rel 𝑅)

Proof of Theorem errel
StepHypRef Expression
1 df-er 8671 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp1bi 1145 1 (𝑅 Er 𝐴 → Rel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3912  wss 3914  ccnv 5637  dom cdm 5638  ccom 5642  Rel wrel 5643   Er wer 8668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-er 8671
This theorem is referenced by:  ercl  8682  ersym  8683  ertr  8686  ercnv  8692  erssxp  8694  erth  8725  iiner  8762  eqg0el  19115  frgpuplem  19702  qusxpid  33334  ismntop  34016  topfneec  36343  prter3  38875
  Copyright terms: Public domain W3C validator