| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > errel | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| errel | ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 8724 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 2 | 1 | simp1bi 1145 | 1 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3929 ⊆ wss 3931 ◡ccnv 5658 dom cdm 5659 ∘ ccom 5663 Rel wrel 5664 Er wer 8721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-er 8724 |
| This theorem is referenced by: ercl 8735 ersym 8736 ertr 8739 ercnv 8745 erssxp 8747 erth 8775 iiner 8808 eqg0el 19171 frgpuplem 19758 qusxpid 33383 ismntop 34062 topfneec 36378 prter3 38905 |
| Copyright terms: Public domain | W3C validator |