![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > errel | Structured version Visualization version GIF version |
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
errel | ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 8763 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp1bi 1145 | 1 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∪ cun 3974 ⊆ wss 3976 ◡ccnv 5699 dom cdm 5700 ∘ ccom 5704 Rel wrel 5705 Er wer 8760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-er 8763 |
This theorem is referenced by: ercl 8774 ersym 8775 ertr 8778 ercnv 8784 erssxp 8786 erth 8814 iiner 8847 eqg0el 19223 frgpuplem 19814 qusxpid 33356 ismntop 33972 topfneec 36321 prter3 38838 |
Copyright terms: Public domain | W3C validator |