![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > errel | Structured version Visualization version GIF version |
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
errel | ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 8709 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp1bi 1144 | 1 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∪ cun 3946 ⊆ wss 3948 ◡ccnv 5675 dom cdm 5676 ∘ ccom 5680 Rel wrel 5681 Er wer 8706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1088 df-er 8709 |
This theorem is referenced by: ercl 8720 ersym 8721 ertr 8724 ercnv 8730 erssxp 8732 erth 8758 iiner 8789 frgpuplem 19685 eqg0el 32762 qusxpid 32764 ismntop 33319 topfneec 35556 prter3 38068 |
Copyright terms: Public domain | W3C validator |