Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > errel | Structured version Visualization version GIF version |
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
errel | ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 8304 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp1bi 1142 | 1 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∪ cun 3858 ⊆ wss 3860 ◡ccnv 5526 dom cdm 5527 ∘ ccom 5531 Rel wrel 5532 Er wer 8301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 df-er 8304 |
This theorem is referenced by: ercl 8315 ersym 8316 ertr 8319 ercnv 8325 erssxp 8327 erth 8353 iiner 8384 frgpuplem 18970 eqg0el 31082 qusxpid 31084 ismntop 31499 topfneec 34119 prter3 36484 |
Copyright terms: Public domain | W3C validator |