MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  errel Structured version   Visualization version   GIF version

Theorem errel 8639
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errel (𝑅 Er 𝐴 → Rel 𝑅)

Proof of Theorem errel
StepHypRef Expression
1 df-er 8630 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp1bi 1145 1 (𝑅 Er 𝐴 → Rel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cun 3896  wss 3898  ccnv 5620  dom cdm 5621  ccom 5625  Rel wrel 5626   Er wer 8627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-er 8630
This theorem is referenced by:  ercl  8641  ersym  8642  ertr  8645  ercnv  8651  erssxp  8653  erth  8684  iiner  8721  eqg0el  19099  frgpuplem  19688  qusxpid  33337  ismntop  34062  topfneec  36422  prter3  39004
  Copyright terms: Public domain W3C validator