MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  errel Structured version   Visualization version   GIF version

Theorem errel 8718
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errel (𝑅 Er 𝐴 → Rel 𝑅)

Proof of Theorem errel
StepHypRef Expression
1 df-er 8709 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp1bi 1144 1 (𝑅 Er 𝐴 → Rel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3946  wss 3948  ccnv 5675  dom cdm 5676  ccom 5680  Rel wrel 5681   Er wer 8706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1088  df-er 8709
This theorem is referenced by:  ercl  8720  ersym  8721  ertr  8724  ercnv  8730  erssxp  8732  erth  8758  iiner  8789  frgpuplem  19685  eqg0el  32762  qusxpid  32764  ismntop  33319  topfneec  35556  prter3  38068
  Copyright terms: Public domain W3C validator