MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  errel Structured version   Visualization version   GIF version

Theorem errel 8465
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errel (𝑅 Er 𝐴 → Rel 𝑅)

Proof of Theorem errel
StepHypRef Expression
1 df-er 8456 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp1bi 1143 1 (𝑅 Er 𝐴 → Rel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cun 3881  wss 3883  ccnv 5579  dom cdm 5580  ccom 5584  Rel wrel 5585   Er wer 8453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-er 8456
This theorem is referenced by:  ercl  8467  ersym  8468  ertr  8471  ercnv  8477  erssxp  8479  erth  8505  iiner  8536  frgpuplem  19293  eqg0el  31459  qusxpid  31461  ismntop  31876  topfneec  34471  prter3  36823
  Copyright terms: Public domain W3C validator