Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ersym | Structured version Visualization version GIF version |
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
ersym | ⊢ (𝜑 → 𝐵𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | ersym.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
3 | errel 8313 | . . . . . 6 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → Rel 𝑅) |
5 | brrelex12 5577 | . . . . 5 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
6 | 4, 1, 5 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
7 | brcnvg 5724 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | |
8 | 7 | ancoms 462 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) |
10 | 1, 9 | mpbird 260 | . 2 ⊢ (𝜑 → 𝐵◡𝑅𝐴) |
11 | df-er 8304 | . . . . . 6 ⊢ (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
12 | 11 | simp3bi 1144 | . . . . 5 ⊢ (𝑅 Er 𝑋 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) |
13 | 2, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) |
14 | 13 | unssad 4094 | . . 3 ⊢ (𝜑 → ◡𝑅 ⊆ 𝑅) |
15 | 14 | ssbrd 5078 | . 2 ⊢ (𝜑 → (𝐵◡𝑅𝐴 → 𝐵𝑅𝐴)) |
16 | 10, 15 | mpd 15 | 1 ⊢ (𝜑 → 𝐵𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∪ cun 3858 ⊆ wss 3860 class class class wbr 5035 ◡ccnv 5526 dom cdm 5527 ∘ ccom 5531 Rel wrel 5532 Er wer 8301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5036 df-opab 5098 df-xp 5533 df-rel 5534 df-cnv 5535 df-er 8304 |
This theorem is referenced by: ercl2 8317 ersymb 8318 ertr2d 8321 ertr3d 8322 ertr4d 8323 erth 8353 erinxp 8386 nqereu 10394 nqerf 10395 1nqenq 10427 qusgrp2 18289 efginvrel2 18925 efgcpbllemb 18953 2idlcpbl 20080 tgptsmscls 22855 nsgqusf1olem3 31125 qsalrel 39750 prjspner01 39987 |
Copyright terms: Public domain | W3C validator |