MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ersym Structured version   Visualization version   GIF version

Theorem ersym 8530
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1 (𝜑𝑅 Er 𝑋)
ersym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
ersym (𝜑𝐵𝑅𝐴)

Proof of Theorem ersym
StepHypRef Expression
1 ersym.2 . . 3 (𝜑𝐴𝑅𝐵)
2 ersym.1 . . . . . 6 (𝜑𝑅 Er 𝑋)
3 errel 8527 . . . . . 6 (𝑅 Er 𝑋 → Rel 𝑅)
42, 3syl 17 . . . . 5 (𝜑 → Rel 𝑅)
5 brrelex12 5641 . . . . 5 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
64, 1, 5syl2anc 583 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
7 brcnvg 5792 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵𝑅𝐴𝐴𝑅𝐵))
87ancoms 458 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵𝑅𝐴𝐴𝑅𝐵))
96, 8syl 17 . . 3 (𝜑 → (𝐵𝑅𝐴𝐴𝑅𝐵))
101, 9mpbird 256 . 2 (𝜑𝐵𝑅𝐴)
11 df-er 8518 . . . . . 6 (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
1211simp3bi 1145 . . . . 5 (𝑅 Er 𝑋 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
132, 12syl 17 . . . 4 (𝜑 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
1413unssad 4124 . . 3 (𝜑𝑅𝑅)
1514ssbrd 5120 . 2 (𝜑 → (𝐵𝑅𝐴𝐵𝑅𝐴))
1610, 15mpd 15 1 (𝜑𝐵𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1537  wcel 2101  Vcvv 3434  cun 3887  wss 3889   class class class wbr 5077  ccnv 5590  dom cdm 5591  ccom 5595  Rel wrel 5596   Er wer 8515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-br 5078  df-opab 5140  df-xp 5597  df-rel 5598  df-cnv 5599  df-er 8518
This theorem is referenced by:  ercl2  8531  ersymb  8532  ertr2d  8535  ertr3d  8536  ertr4d  8537  erth  8567  erinxp  8600  nqereu  10713  nqerf  10714  1nqenq  10746  qusgrp2  18721  efginvrel2  19361  efgcpbllemb  19389  2idlcpbl  20533  tgptsmscls  23329  nsgqusf1olem3  31628  qsalrel  40238  prjspner01  40485
  Copyright terms: Public domain W3C validator