|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ersym | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) | 
| ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) | 
| Ref | Expression | 
|---|---|
| ersym | ⊢ (𝜑 → 𝐵𝑅𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | ersym.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 3 | errel 8755 | . . . . . 6 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → Rel 𝑅) | 
| 5 | brrelex12 5736 | . . . . 5 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 6 | 4, 1, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 7 | brcnvg 5889 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | |
| 8 | 7 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | 
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | 
| 10 | 1, 9 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐵◡𝑅𝐴) | 
| 11 | df-er 8746 | . . . . . 6 ⊢ (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 12 | 11 | simp3bi 1147 | . . . . 5 ⊢ (𝑅 Er 𝑋 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) | 
| 13 | 2, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) | 
| 14 | 13 | unssad 4192 | . . 3 ⊢ (𝜑 → ◡𝑅 ⊆ 𝑅) | 
| 15 | 14 | ssbrd 5185 | . 2 ⊢ (𝜑 → (𝐵◡𝑅𝐴 → 𝐵𝑅𝐴)) | 
| 16 | 10, 15 | mpd 15 | 1 ⊢ (𝜑 → 𝐵𝑅𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∪ cun 3948 ⊆ wss 3950 class class class wbr 5142 ◡ccnv 5683 dom cdm 5684 ∘ ccom 5688 Rel wrel 5689 Er wer 8743 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-er 8746 | 
| This theorem is referenced by: ercl2 8759 ersymb 8760 ertr2d 8763 ertr3d 8764 ertr4d 8765 erth 8797 erinxp 8832 nqereu 10970 nqerf 10971 1nqenq 11003 qusgrp2 19077 efginvrel2 19746 efgcpbllemb 19774 2idlcpblrng 21282 tgptsmscls 24159 nsgqusf1olem3 33444 qsnzr 33484 qsalrel 42281 prjspner01 42640 | 
| Copyright terms: Public domain | W3C validator |