| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ersym | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| ersym | ⊢ (𝜑 → 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | ersym.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 3 | errel 8634 | . . . . . 6 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → Rel 𝑅) |
| 5 | brrelex12 5671 | . . . . 5 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 6 | 4, 1, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 7 | brcnvg 5822 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | |
| 8 | 7 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) |
| 10 | 1, 9 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐵◡𝑅𝐴) |
| 11 | df-er 8625 | . . . . . 6 ⊢ (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 12 | 11 | simp3bi 1147 | . . . . 5 ⊢ (𝑅 Er 𝑋 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) |
| 13 | 2, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) |
| 14 | 13 | unssad 4144 | . . 3 ⊢ (𝜑 → ◡𝑅 ⊆ 𝑅) |
| 15 | 14 | ssbrd 5135 | . 2 ⊢ (𝜑 → (𝐵◡𝑅𝐴 → 𝐵𝑅𝐴)) |
| 16 | 10, 15 | mpd 15 | 1 ⊢ (𝜑 → 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∪ cun 3901 ⊆ wss 3903 class class class wbr 5092 ◡ccnv 5618 dom cdm 5619 ∘ ccom 5623 Rel wrel 5624 Er wer 8622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-er 8625 |
| This theorem is referenced by: ercl2 8638 ersymb 8639 ertr2d 8642 ertr3d 8643 ertr4d 8644 erth 8679 erinxp 8718 nqereu 10823 nqerf 10824 1nqenq 10856 qusgrp2 18937 efginvrel2 19606 efgcpbllemb 19634 2idlcpblrng 21178 tgptsmscls 24035 nsgqusf1olem3 33352 qsnzr 33392 qsalrel 42213 prjspner01 42598 |
| Copyright terms: Public domain | W3C validator |