MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ersym Structured version   Visualization version   GIF version

Theorem ersym 8736
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1 (𝜑𝑅 Er 𝑋)
ersym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
ersym (𝜑𝐵𝑅𝐴)

Proof of Theorem ersym
StepHypRef Expression
1 ersym.2 . . 3 (𝜑𝐴𝑅𝐵)
2 ersym.1 . . . . . 6 (𝜑𝑅 Er 𝑋)
3 errel 8733 . . . . . 6 (𝑅 Er 𝑋 → Rel 𝑅)
42, 3syl 17 . . . . 5 (𝜑 → Rel 𝑅)
5 brrelex12 5711 . . . . 5 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
64, 1, 5syl2anc 584 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
7 brcnvg 5864 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵𝑅𝐴𝐴𝑅𝐵))
87ancoms 458 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵𝑅𝐴𝐴𝑅𝐵))
96, 8syl 17 . . 3 (𝜑 → (𝐵𝑅𝐴𝐴𝑅𝐵))
101, 9mpbird 257 . 2 (𝜑𝐵𝑅𝐴)
11 df-er 8724 . . . . . 6 (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
1211simp3bi 1147 . . . . 5 (𝑅 Er 𝑋 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
132, 12syl 17 . . . 4 (𝜑 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
1413unssad 4173 . . 3 (𝜑𝑅𝑅)
1514ssbrd 5167 . 2 (𝜑 → (𝐵𝑅𝐴𝐵𝑅𝐴))
1610, 15mpd 15 1 (𝜑𝐵𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cun 3929  wss 3931   class class class wbr 5124  ccnv 5658  dom cdm 5659  ccom 5663  Rel wrel 5664   Er wer 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-er 8724
This theorem is referenced by:  ercl2  8737  ersymb  8738  ertr2d  8741  ertr3d  8742  ertr4d  8743  erth  8775  erinxp  8810  nqereu  10948  nqerf  10949  1nqenq  10981  qusgrp2  19046  efginvrel2  19713  efgcpbllemb  19741  2idlcpblrng  21237  tgptsmscls  24093  nsgqusf1olem3  33435  qsnzr  33475  qsalrel  42258  prjspner01  42623
  Copyright terms: Public domain W3C validator