| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ersym | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| ersym | ⊢ (𝜑 → 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | ersym.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 3 | errel 8733 | . . . . . 6 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → Rel 𝑅) |
| 5 | brrelex12 5711 | . . . . 5 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 6 | 4, 1, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 7 | brcnvg 5864 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | |
| 8 | 7 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) |
| 10 | 1, 9 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐵◡𝑅𝐴) |
| 11 | df-er 8724 | . . . . . 6 ⊢ (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 12 | 11 | simp3bi 1147 | . . . . 5 ⊢ (𝑅 Er 𝑋 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) |
| 13 | 2, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) |
| 14 | 13 | unssad 4173 | . . 3 ⊢ (𝜑 → ◡𝑅 ⊆ 𝑅) |
| 15 | 14 | ssbrd 5167 | . 2 ⊢ (𝜑 → (𝐵◡𝑅𝐴 → 𝐵𝑅𝐴)) |
| 16 | 10, 15 | mpd 15 | 1 ⊢ (𝜑 → 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 ⊆ wss 3931 class class class wbr 5124 ◡ccnv 5658 dom cdm 5659 ∘ ccom 5663 Rel wrel 5664 Er wer 8721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-er 8724 |
| This theorem is referenced by: ercl2 8737 ersymb 8738 ertr2d 8741 ertr3d 8742 ertr4d 8743 erth 8775 erinxp 8810 nqereu 10948 nqerf 10949 1nqenq 10981 qusgrp2 19046 efginvrel2 19713 efgcpbllemb 19741 2idlcpblrng 21237 tgptsmscls 24093 nsgqusf1olem3 33435 qsnzr 33475 qsalrel 42258 prjspner01 42623 |
| Copyright terms: Public domain | W3C validator |