Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ersym | Structured version Visualization version GIF version |
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
ersym | ⊢ (𝜑 → 𝐵𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | ersym.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
3 | errel 8465 | . . . . . 6 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → Rel 𝑅) |
5 | brrelex12 5630 | . . . . 5 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
6 | 4, 1, 5 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
7 | brcnvg 5777 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | |
8 | 7 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) |
10 | 1, 9 | mpbird 256 | . 2 ⊢ (𝜑 → 𝐵◡𝑅𝐴) |
11 | df-er 8456 | . . . . . 6 ⊢ (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
12 | 11 | simp3bi 1145 | . . . . 5 ⊢ (𝑅 Er 𝑋 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) |
13 | 2, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) |
14 | 13 | unssad 4117 | . . 3 ⊢ (𝜑 → ◡𝑅 ⊆ 𝑅) |
15 | 14 | ssbrd 5113 | . 2 ⊢ (𝜑 → (𝐵◡𝑅𝐴 → 𝐵𝑅𝐴)) |
16 | 10, 15 | mpd 15 | 1 ⊢ (𝜑 → 𝐵𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 class class class wbr 5070 ◡ccnv 5579 dom cdm 5580 ∘ ccom 5584 Rel wrel 5585 Er wer 8453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-er 8456 |
This theorem is referenced by: ercl2 8469 ersymb 8470 ertr2d 8473 ertr3d 8474 ertr4d 8475 erth 8505 erinxp 8538 nqereu 10616 nqerf 10617 1nqenq 10649 qusgrp2 18608 efginvrel2 19248 efgcpbllemb 19276 2idlcpbl 20418 tgptsmscls 23209 nsgqusf1olem3 31502 qsalrel 40141 prjspner01 40383 |
Copyright terms: Public domain | W3C validator |