|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ereq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| ereq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Er 𝐴 ↔ 𝑅 Er 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeq2 2748 | . . 3 ⊢ (𝐴 = 𝐵 → (dom 𝑅 = 𝐴 ↔ dom 𝑅 = 𝐵)) | |
| 2 | 1 | 3anbi2d 1442 | . 2 ⊢ (𝐴 = 𝐵 → ((Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐵 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅))) | 
| 3 | df-er 8746 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 4 | df-er 8746 | . 2 ⊢ (𝑅 Er 𝐵 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐵 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Er 𝐴 ↔ 𝑅 Er 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1539 ∪ cun 3948 ⊆ wss 3950 ◡ccnv 5683 dom cdm 5684 ∘ ccom 5688 Rel wrel 5689 Er wer 8743 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1779 df-cleq 2728 df-er 8746 | 
| This theorem is referenced by: iserd 8772 efgval 19736 frgp0 19779 frgpmhm 19784 | 
| Copyright terms: Public domain | W3C validator |