![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ereq2 | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ereq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Er 𝐴 ↔ 𝑅 Er 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2748 | . . 3 ⊢ (𝐴 = 𝐵 → (dom 𝑅 = 𝐴 ↔ dom 𝑅 = 𝐵)) | |
2 | 1 | 3anbi2d 1441 | . 2 ⊢ (𝐴 = 𝐵 → ((Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐵 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅))) |
3 | df-er 8648 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
4 | df-er 8648 | . 2 ⊢ (𝑅 Er 𝐵 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐵 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Er 𝐴 ↔ 𝑅 Er 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∪ cun 3908 ⊆ wss 3910 ◡ccnv 5632 dom cdm 5633 ∘ ccom 5637 Rel wrel 5638 Er wer 8645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 df-ex 1782 df-cleq 2728 df-er 8648 |
This theorem is referenced by: iserd 8674 efgval 19499 frgp0 19542 frgpmhm 19547 |
Copyright terms: Public domain | W3C validator |