MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ereq2 Structured version   Visualization version   GIF version

Theorem ereq2 8506
Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq2 (𝐴 = 𝐵 → (𝑅 Er 𝐴𝑅 Er 𝐵))

Proof of Theorem ereq2
StepHypRef Expression
1 eqeq2 2750 . . 3 (𝐴 = 𝐵 → (dom 𝑅 = 𝐴 ↔ dom 𝑅 = 𝐵))
213anbi2d 1440 . 2 (𝐴 = 𝐵 → ((Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅) ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐵 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)))
3 df-er 8498 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
4 df-er 8498 . 2 (𝑅 Er 𝐵 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐵 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝑅 Er 𝐴𝑅 Er 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  cun 3885  wss 3887  ccnv 5588  dom cdm 5589  ccom 5593  Rel wrel 5594   Er wer 8495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-ex 1783  df-cleq 2730  df-er 8498
This theorem is referenced by:  iserd  8524  efgval  19323  frgp0  19366  frgpmhm  19371
  Copyright terms: Public domain W3C validator