| Metamath
Proof Explorer Theorem List (p. 88 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30896) |
(30897-32419) |
(32420-49843) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | uniqs2 8701 | The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| ⊢ (𝜑 → 𝑅 Er 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) | ||
| Theorem | snec 8702 | The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) | ||
| Theorem | ecqs 8703 | Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.) |
| ⊢ 𝑅 ∈ V ⇒ ⊢ [𝐴]𝑅 = ∪ ({𝐴} / 𝑅) | ||
| Theorem | ecid 8704 | A set is equal to its coset under the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ [𝐴]◡ E = 𝐴 | ||
| Theorem | qsid 8705 | A set is equal to its quotient set modulo the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| ⊢ (𝐴 / ◡ E ) = 𝐴 | ||
| Theorem | ectocld 8706* | Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| ⊢ 𝑆 = (𝐵 / 𝑅) & ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) ⇒ ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) | ||
| Theorem | ectocl 8707* | Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| ⊢ 𝑆 = (𝐵 / 𝑅) & ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝑆 → 𝜓) | ||
| Theorem | elqsn0 8708 | A quotient set does not contain the empty set. (Contributed by NM, 24-Aug-1995.) |
| ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅) | ||
| Theorem | ecelqsdm 8709 | Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995.) |
| ⊢ ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵 ∈ 𝐴) | ||
| Theorem | ecelqsdmb 8710 | 𝑅-coset of 𝐵 in a quotient set, biconditional version. (Contributed by Peter Mazsa, 17-Apr-2019.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| ⊢ (((𝑅 ↾ 𝐴) ∈ 𝑉 ∧ dom 𝑅 = 𝐴) → ([𝐵]𝑅 ∈ (𝐴 / 𝑅) ↔ 𝐵 ∈ 𝐴)) | ||
| Theorem | eceldmqs 8711 | 𝑅-coset in its domain quotient. This is the bridge between 𝐴 in the domain and its block [𝐴]𝑅 in its domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| ⊢ (𝑅 ∈ 𝑉 → ([𝐴]𝑅 ∈ (dom 𝑅 / 𝑅) ↔ 𝐴 ∈ dom 𝑅)) | ||
| Theorem | xpider 8712 | A Cartesian square is an equivalence relation (in general, it is not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ (𝐴 × 𝐴) Er 𝐴 | ||
| Theorem | iiner 8713* | The intersection of a nonempty family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵) | ||
| Theorem | riiner 8714* | The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) | ||
| Theorem | erinxp 8715 | A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ (𝜑 → 𝑅 Er 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵) | ||
| Theorem | ecinxp 8716 | Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴))) | ||
| Theorem | qsinxp 8717 | Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) | ||
| Theorem | qsdisj 8718 | Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.) |
| ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝐵 ∈ (𝐴 / 𝑅)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴 / 𝑅)) ⇒ ⊢ (𝜑 → (𝐵 = 𝐶 ∨ (𝐵 ∩ 𝐶) = ∅)) | ||
| Theorem | qsdisj2 8719* | A quotient set is a disjoint set. (Contributed by Mario Carneiro, 10-Dec-2016.) |
| ⊢ (𝑅 Er 𝑋 → Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥) | ||
| Theorem | qsel 8720 | If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| ⊢ ((𝑅 Er 𝑋 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) | ||
| Theorem | uniinqs 8721 | Class union distributes over the intersection of two subclasses of a quotient space. Compare uniin 4883. (Contributed by FL, 25-May-2007.) (Proof shortened by Mario Carneiro, 11-Jul-2014.) |
| ⊢ 𝑅 Er 𝑋 ⇒ ⊢ ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → ∪ (𝐵 ∩ 𝐶) = (∪ 𝐵 ∩ ∪ 𝐶)) | ||
| Theorem | qliftlem 8722* | Lemma for theorems about a function lift. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) | ||
| Theorem | qliftrel 8723* | 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ⊆ ((𝑋 / 𝑅) × 𝑌)) | ||
| Theorem | qliftel 8724* | Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶𝑅𝑥 ∧ 𝐷 = 𝐴))) | ||
| Theorem | qliftel1 8725* | Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅𝐹𝐴) | ||
| Theorem | qliftfun 8726* | The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵))) | ||
| Theorem | qliftfund 8727* | The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Fun 𝐹) | ||
| Theorem | qliftfuns 8728* | The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) | ||
| Theorem | qliftf 8729* | The domain and codomain of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) | ||
| Theorem | qliftval 8730* | The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝑥 = 𝐶 → 𝐴 = 𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵) | ||
| Theorem | ecoptocl 8731* | Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.) |
| ⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅) & ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝑆 → 𝜓) | ||
| Theorem | 2ecoptocl 8732* | Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.) |
| ⊢ 𝑆 = ((𝐶 × 𝐷) / 𝑅) & ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝜒) | ||
| Theorem | 3ecoptocl 8733* | Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.) |
| ⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅) & ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) | ||
| Theorem | brecop 8734* | Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996.) |
| ⊢ ∼ ∈ V & ⊢ ∼ Er (𝐺 × 𝐺) & ⊢ 𝐻 = ((𝐺 × 𝐺) / ∼ ) & ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ∼ ∧ 𝑦 = [〈𝑣, 𝑢〉] ∼ ) ∧ 𝜑))} & ⊢ ((((𝑧 ∈ 𝐺 ∧ 𝑤 ∈ 𝐺) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺)) ∧ ((𝑣 ∈ 𝐺 ∧ 𝑢 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺))) → (([〈𝑧, 𝑤〉] ∼ = [〈𝐴, 𝐵〉] ∼ ∧ [〈𝑣, 𝑢〉] ∼ = [〈𝐶, 𝐷〉] ∼ ) → (𝜑 ↔ 𝜓))) ⇒ ⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → ([〈𝐴, 𝐵〉] ∼ ≤ [〈𝐶, 𝐷〉] ∼ ↔ 𝜓)) | ||
| Theorem | brecop2 8735 | Binary relation on a quotient set. Lemma for real number construction. Eliminates antecedent from last hypothesis. (Contributed by NM, 13-Feb-1996.) (Revised by AV, 12-Jul-2022.) |
| ⊢ dom ∼ = (𝐺 × 𝐺) & ⊢ 𝐻 = ((𝐺 × 𝐺) / ∼ ) & ⊢ 𝑅 ⊆ (𝐻 × 𝐻) & ⊢ ≤ ⊆ (𝐺 × 𝐺) & ⊢ ¬ ∅ ∈ 𝐺 & ⊢ dom + = (𝐺 × 𝐺) & ⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → ([〈𝐴, 𝐵〉] ∼ 𝑅[〈𝐶, 𝐷〉] ∼ ↔ (𝐴 + 𝐷) ≤ (𝐵 + 𝐶))) ⇒ ⊢ ([〈𝐴, 𝐵〉] ∼ 𝑅[〈𝐶, 𝐷〉] ∼ ↔ (𝐴 + 𝐷) ≤ (𝐵 + 𝐶)) | ||
| Theorem | eroveu 8736* | Lemma for erov 8738 and eroprf 8739. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| ⊢ 𝐽 = (𝐴 / 𝑅) & ⊢ 𝐾 = (𝐵 / 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑍) & ⊢ (𝜑 → 𝑅 Er 𝑈) & ⊢ (𝜑 → 𝑆 Er 𝑉) & ⊢ (𝜑 → 𝑇 Er 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝑉) & ⊢ (𝜑 → 𝐶 ⊆ 𝑊) & ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶) & ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾)) → ∃!𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑋 = [𝑝]𝑅 ∧ 𝑌 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) | ||
| Theorem | erovlem 8737* | Lemma for erov 8738 and eroprf 8739. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| ⊢ 𝐽 = (𝐴 / 𝑅) & ⊢ 𝐾 = (𝐵 / 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑍) & ⊢ (𝜑 → 𝑅 Er 𝑈) & ⊢ (𝜑 → 𝑆 Er 𝑉) & ⊢ (𝜑 → 𝑇 Er 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝑉) & ⊢ (𝜑 → 𝐶 ⊆ 𝑊) & ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶) & ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) & ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} ⇒ ⊢ (𝜑 → ⨣ = (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))) | ||
| Theorem | erov 8738* | The value of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| ⊢ 𝐽 = (𝐴 / 𝑅) & ⊢ 𝐾 = (𝐵 / 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑍) & ⊢ (𝜑 → 𝑅 Er 𝑈) & ⊢ (𝜑 → 𝑆 Er 𝑉) & ⊢ (𝜑 → 𝑇 Er 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝑉) & ⊢ (𝜑 → 𝐶 ⊆ 𝑊) & ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶) & ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) & ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵) → ([𝑃]𝑅 ⨣ [𝑄]𝑆) = [(𝑃 + 𝑄)]𝑇) | ||
| Theorem | eroprf 8739* | Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| ⊢ 𝐽 = (𝐴 / 𝑅) & ⊢ 𝐾 = (𝐵 / 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑍) & ⊢ (𝜑 → 𝑅 Er 𝑈) & ⊢ (𝜑 → 𝑆 Er 𝑉) & ⊢ (𝜑 → 𝑇 Er 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝑉) & ⊢ (𝜑 → 𝐶 ⊆ 𝑊) & ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶) & ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) & ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ 𝐿 = (𝐶 / 𝑇) ⇒ ⊢ (𝜑 → ⨣ :(𝐽 × 𝐾)⟶𝐿) | ||
| Theorem | erov2 8740* | The value of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐽 = (𝐴 / ∼ ) & ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} & ⊢ (𝜑 → ∼ ∈ 𝑋) & ⊢ (𝜑 → ∼ Er 𝑈) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈) & ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) & ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ([𝑃] ∼ ⨣ [𝑄] ∼ ) = [(𝑃 + 𝑄)] ∼ ) | ||
| Theorem | eroprf2 8741* | Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐽 = (𝐴 / ∼ ) & ⊢ ⨣ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} & ⊢ (𝜑 → ∼ ∈ 𝑋) & ⊢ (𝜑 → ∼ Er 𝑈) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈) & ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴) & ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) ⇒ ⊢ (𝜑 → ⨣ :(𝐽 × 𝐽)⟶𝐽) | ||
| Theorem | ecopoveq 8742* | This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation ∼ (specified by the hypothesis) in terms of its operation 𝐹. (Contributed by NM, 16-Aug-1995.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⇒ ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (〈𝐴, 𝐵〉 ∼ 〈𝐶, 𝐷〉 ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) | ||
| Theorem | ecopovsym 8743* | Assuming the operation 𝐹 is commutative, show that the relation ∼, specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) ⇒ ⊢ (𝐴 ∼ 𝐵 → 𝐵 ∼ 𝐴) | ||
| Theorem | ecopovtrn 8744* | Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation ∼, specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶) → 𝐴 ∼ 𝐶) | ||
| Theorem | ecopover 8745* | Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation ∼, specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ∼ Er (𝑆 × 𝑆) | ||
| Theorem | eceqoveq 8746* | Equality of equivalence relation in terms of an operation. (Contributed by NM, 15-Feb-1996.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) |
| ⊢ ∼ Er (𝑆 × 𝑆) & ⊢ dom + = (𝑆 × 𝑆) & ⊢ ¬ ∅ ∈ 𝑆 & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (〈𝐴, 𝐵〉 ∼ 〈𝐶, 𝐷〉 ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ([〈𝐴, 𝐵〉] ∼ = [〈𝐶, 𝐷〉] ∼ ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) | ||
| Theorem | ecovcom 8747* | Lemma used to transfer a commutative law via an equivalence relation. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
| ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ 𝐷 = 𝐻 & ⊢ 𝐺 = 𝐽 ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | ecovass 8748* | Lemma used to transfer an associative law via an equivalence relation. (Contributed by NM, 31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
| ⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐺, 𝐻〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑁, 𝑄〉] ∼ ) & ⊢ (((𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝐺, 𝐻〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝐽, 𝐾〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑁, 𝑄〉] ∼ ) = [〈𝐿, 𝑀〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) & ⊢ 𝐽 = 𝐿 & ⊢ 𝐾 = 𝑀 ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | ecovdi 8749* | Lemma used to transfer a distributive law via an equivalence relation. (Contributed by NM, 2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
| ⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑀, 𝑁〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) = [〈𝑊, 𝑋〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ ) = [〈𝑌, 𝑍〉] ∼ ) & ⊢ (((𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) → ([〈𝑊, 𝑋〉] ∼ + [〈𝑌, 𝑍〉] ∼ ) = [〈𝐾, 𝐿〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) & ⊢ 𝐻 = 𝐾 & ⊢ 𝐽 = 𝐿 ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Syntax | cmap 8750 | Extend the definition of a class to include the mapping operation. (Read for 𝐴 ↑m 𝐵, "the set of all functions that map from 𝐵 to 𝐴.) |
| class ↑m | ||
| Syntax | cpm 8751 | Extend the definition of a class to include the partial mapping operation. (Read for 𝐴 ↑pm 𝐵, "the set of all partial functions that map from 𝐵 to 𝐴.) |
| class ↑pm | ||
| Definition | df-map 8752* | Define the mapping operation or set exponentiation. The set of all functions that map from 𝐵 to 𝐴 is written (𝐴 ↑m 𝐵) (see mapval 8762). Many authors write 𝐴 followed by 𝐵 as a superscript for this operation and rely on context to avoid confusion other exponentiation operations (e.g., Definition 10.42 of [TakeutiZaring] p. 95). Other authors show 𝐵 as a prefixed superscript, which is read "𝐴 pre 𝐵 " (e.g., definition of [Enderton] p. 52). Definition 8.21 of [Eisenberg] p. 125 uses the notation Map(𝐵, 𝐴) for our (𝐴 ↑m 𝐵). The up-arrow is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976). We adopt the first case of his notation (simple exponentiation) and subscript it with m to distinguish it from other kinds of exponentiation. (Contributed by NM, 8-Dec-2003.) |
| ⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | ||
| Definition | df-pm 8753* | Define the partial mapping operation. A partial function from 𝐵 to 𝐴 is a function from a subset of 𝐵 to 𝐴. The set of all partial functions from 𝐵 to 𝐴 is written (𝐴 ↑pm 𝐵) (see pmvalg 8761). A notation for this operation apparently does not appear in the literature. We use ↑pm to distinguish it from the less general set exponentiation operation ↑m (df-map 8752). See mapsspm 8800 for its relationship to set exponentiation. (Contributed by NM, 15-Nov-2007.) |
| ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) | ||
| Theorem | mapprc 8754* | When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.) |
| ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) | ||
| Theorem | pmex 8755* | The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐴 × 𝐵))} ∈ V) | ||
| Theorem | mapexOLD 8756* | Obsolete version of mapex 7871 as of 17-Jun-2025. (Contributed by Raph Levien, 4-Dec-2003.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | ||
| Theorem | fnmap 8757 | Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ ↑m Fn (V × V) | ||
| Theorem | fnpm 8758 | Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013.) |
| ⊢ ↑pm Fn (V × V) | ||
| Theorem | reldmmap 8759 | Set exponentiation is a well-behaved binary operator. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
| ⊢ Rel dom ↑m | ||
| Theorem | mapvalg 8760* | The value of set exponentiation. (𝐴 ↑m 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) | ||
| Theorem | pmvalg 8761* | The value of the partial mapping operation. (𝐴 ↑pm 𝐵) is the set of all partial functions that map from 𝐵 to 𝐴. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}) | ||
| Theorem | mapval 8762* | The value of set exponentiation (inference version). (𝐴 ↑m 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ↑m 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴} | ||
| Theorem | elmapg 8763 | Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑m 𝐵) ↔ 𝐶:𝐵⟶𝐴)) | ||
| Theorem | elmapd 8764 | Deduction form of elmapg 8763. (Contributed by BJ, 11-Apr-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑m 𝐵) ↔ 𝐶:𝐵⟶𝐴)) | ||
| Theorem | elmapdd 8765 | Deduction associated with elmapd 8764. (Contributed by SN, 29-Jul-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶:𝐵⟶𝐴) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑m 𝐵)) | ||
| Theorem | mapdm0 8766 | The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑m ∅) = {∅}) | ||
| Theorem | elpmg 8767 | The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐶 ∧ 𝐶 ⊆ (𝐵 × 𝐴)))) | ||
| Theorem | elpm2g 8768 | The predicate "is a partial function". (Contributed by NM, 31-Dec-2013.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) | ||
| Theorem | elpm2r 8769 | Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) | ||
| Theorem | elpmi 8770 | A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015.) |
| ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) | ||
| Theorem | pmfun 8771 | A partial function is a function. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → Fun 𝐹) | ||
| Theorem | elmapex 8772 | Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) | ||
| Theorem | elmapi 8773 | A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | ||
| Theorem | mapfset 8774* | If 𝐵 is a set, the value of the set exponentiation (𝐵 ↑m 𝐴) is the class of all functions from 𝐴 to 𝐵. Generalisation of mapvalg 8760 (which does not require ax-rep 5217) to arbitrary domains. Note that the class {𝑓 ∣ 𝑓:𝐴⟶𝐵} can only contain set-functions, as opposed to arbitrary class-functions. When 𝐴 is a proper class, there can be no set-functions on it, so the above class is empty (see also fsetdmprc0 8779), hence a set. In this case, both sides of the equality in this theorem are the empty set. (Contributed by AV, 8-Aug-2024.) |
| ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = (𝐵 ↑m 𝐴)) | ||
| Theorem | mapssfset 8775* | The value of the set exponentiation (𝐵 ↑m 𝐴) is a subset of the class of functions from 𝐴 to 𝐵. (Contributed by AV, 10-Aug-2024.) |
| ⊢ (𝐵 ↑m 𝐴) ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} | ||
| Theorem | mapfoss 8776* | The value of the set exponentiation (𝐵 ↑m 𝐴) is a superset of the set of all functions from 𝐴 onto 𝐵. (Contributed by AV, 7-Aug-2024.) |
| ⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ⊆ (𝐵 ↑m 𝐴) | ||
| Theorem | fsetsspwxp 8777* | The class of all functions from 𝐴 into 𝐵 is a subclass of the power class of the cartesion product of 𝐴 and 𝐵. (Contributed by AV, 13-Sep-2024.) |
| ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) | ||
| Theorem | fset0 8778 | The set of functions from the empty set is the singleton containing the empty set. (Contributed by AV, 13-Sep-2024.) |
| ⊢ {𝑓 ∣ 𝑓:∅⟶𝐵} = {∅} | ||
| Theorem | fsetdmprc0 8779* | The set of functions with a proper class as domain is empty. (Contributed by AV, 22-Aug-2024.) |
| ⊢ (𝐴 ∉ V → {𝑓 ∣ 𝑓 Fn 𝐴} = ∅) | ||
| Theorem | fsetex 8780* | The set of functions between two classes exists if the codomain exists. Generalization of mapex 7871 to arbitrary domains. (Contributed by AV, 14-Aug-2024.) |
| ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | ||
| Theorem | f1setex 8781* | The set of injections between two classes exists if the codomain exists. (Contributed by AV, 14-Aug-2024.) |
| ⊢ (𝐵 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1→𝐵} ∈ V) | ||
| Theorem | fosetex 8782* | The set of surjections between two classes exists (without any precondition). (Contributed by AV, 8-Aug-2024.) |
| ⊢ {𝑓 ∣ 𝑓:𝐴–onto→𝐵} ∈ V | ||
| Theorem | f1osetex 8783* | The set of bijections between two classes exists. (Contributed by AV, 30-Mar-2024.) (Revised by AV, 8-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.) |
| ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐵} ∈ V | ||
| Theorem | fsetfcdm 8784* | The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024.) |
| ⊢ 𝐹 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} & ⊢ 𝑆 = (𝑔 ∈ 𝐹 ↦ (𝑔‘𝑋)) ⇒ ⊢ (𝑋 ∈ 𝐴 → 𝑆:𝐹⟶𝐵) | ||
| Theorem | fsetfocdm 8785* | The class of functions with a given domain that is a set and a given codomain is mapped, through evaluation at a point of the domain, onto the codomain. (Contributed by AV, 15-Sep-2024.) |
| ⊢ 𝐹 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} & ⊢ 𝑆 = (𝑔 ∈ 𝐹 ↦ (𝑔‘𝑋)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → 𝑆:𝐹–onto→𝐵) | ||
| Theorem | fsetprcnex 8786* | The class of all functions from a nonempty set 𝐴 into a proper class 𝐵 is not a set. If one of the preconditions is not fufilled, then {𝑓 ∣ 𝑓:𝐴⟶𝐵} is a set, see fsetdmprc0 8779 for 𝐴 ∉ V, fset0 8778 for 𝐴 = ∅, and fsetex 8780 for 𝐵 ∈ V, see also fsetexb 8788. (Contributed by AV, 14-Sep-2024.) (Proof shortened by BJ, 15-Sep-2024.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V) | ||
| Theorem | fsetcdmex 8787* | The class of all functions from a nonempty set 𝐴 into a class 𝐵 is a set iff 𝐵 is a set . (Contributed by AV, 15-Sep-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (𝐵 ∈ V ↔ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V)) | ||
| Theorem | fsetexb 8788* | The class of all functions from a class 𝐴 into a class 𝐵 is a set iff 𝐵 is a set or 𝐴 is not a set or 𝐴 is empty. (Contributed by AV, 15-Sep-2024.) |
| ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V ↔ (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V)) | ||
| Theorem | elmapfn 8789 | A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.) |
| ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴 Fn 𝐶) | ||
| Theorem | elmapfun 8790 | A mapping is always a function. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → Fun 𝐴) | ||
| Theorem | elmapssres 8791 | A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷) ∈ (𝐵 ↑m 𝐷)) | ||
| Theorem | fpmg 8792 | A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ (𝐵 ↑pm 𝐴)) | ||
| Theorem | pmss12g 8793 | Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
| ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) | ||
| Theorem | pmresg 8794 | Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) | ||
| Theorem | elmap 8795 | Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑m 𝐵) ↔ 𝐹:𝐵⟶𝐴) | ||
| Theorem | mapval2 8796* | Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ↑m 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) | ||
| Theorem | elpm 8797 | The predicate "is a partial function". (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (𝐵 × 𝐴))) | ||
| Theorem | elpm2 8798 | The predicate "is a partial function". (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) | ||
| Theorem | fpm 8799 | A total function is a partial function. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ∈ (𝐵 ↑pm 𝐴)) | ||
| Theorem | mapsspm 8800 | Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ (𝐴 ↑m 𝐵) ⊆ (𝐴 ↑pm 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |