Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > erdm | Structured version Visualization version GIF version |
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 8456 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp2bi 1144 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ cun 3881 ⊆ wss 3883 ◡ccnv 5579 dom cdm 5580 ∘ ccom 5584 Rel wrel 5585 Er wer 8453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-er 8456 |
This theorem is referenced by: ercl 8467 erref 8476 errn 8478 erssxp 8479 erexb 8481 ereldm 8504 uniqs2 8526 iiner 8536 eceqoveq 8569 prsrlem1 10759 ltsrpr 10764 0nsr 10766 divsfval 17175 sylow1lem3 19120 sylow1lem5 19122 sylow2a 19139 vitalilem2 24678 vitalilem3 24679 vitalilem5 24681 |
Copyright terms: Public domain | W3C validator |