| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erdm | Structured version Visualization version GIF version | ||
| Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 8648 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3909 ⊆ wss 3911 ◡ccnv 5630 dom cdm 5631 ∘ ccom 5635 Rel wrel 5636 Er wer 8645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-er 8648 |
| This theorem is referenced by: ercl 8659 erref 8668 errn 8670 erssxp 8671 erexb 8673 ereldm 8701 uniqs2 8727 iiner 8739 eceqoveq 8772 prsrlem1 11001 ltsrpr 11006 0nsr 11008 divsfval 17486 sylow1lem3 19514 sylow1lem5 19516 sylow2a 19533 vitalilem2 25543 vitalilem3 25544 vitalilem5 25546 prjspnn0 42603 |
| Copyright terms: Public domain | W3C validator |