MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erdm Structured version   Visualization version   GIF version

Theorem erdm 8684
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 8674 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1146 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3915  wss 3917  ccnv 5640  dom cdm 5641  ccom 5645  Rel wrel 5646   Er wer 8671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-er 8674
This theorem is referenced by:  ercl  8685  erref  8694  errn  8696  erssxp  8697  erexb  8699  ereldm  8727  uniqs2  8753  iiner  8765  eceqoveq  8798  prsrlem1  11032  ltsrpr  11037  0nsr  11039  divsfval  17517  sylow1lem3  19537  sylow1lem5  19539  sylow2a  19556  vitalilem2  25517  vitalilem3  25518  vitalilem5  25520  prjspnn0  42617
  Copyright terms: Public domain W3C validator