![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erdm | Structured version Visualization version GIF version |
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 8744 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp2bi 1145 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∪ cun 3961 ⊆ wss 3963 ◡ccnv 5688 dom cdm 5689 ∘ ccom 5693 Rel wrel 5694 Er wer 8741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-er 8744 |
This theorem is referenced by: ercl 8755 erref 8764 errn 8766 erssxp 8767 erexb 8769 ereldm 8794 uniqs2 8818 iiner 8828 eceqoveq 8861 prsrlem1 11110 ltsrpr 11115 0nsr 11117 divsfval 17594 sylow1lem3 19633 sylow1lem5 19635 sylow2a 19652 vitalilem2 25658 vitalilem3 25659 vitalilem5 25661 prjspnn0 42609 |
Copyright terms: Public domain | W3C validator |