![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erdm | Structured version Visualization version GIF version |
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 8081 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp2bi 1126 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∪ cun 3823 ⊆ wss 3825 ◡ccnv 5399 dom cdm 5400 ∘ ccom 5404 Rel wrel 5405 Er wer 8078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 df-3an 1070 df-er 8081 |
This theorem is referenced by: ercl 8092 erref 8101 errn 8103 erssxp 8104 erexb 8106 ereldm 8129 uniqs2 8151 iiner 8161 eceqoveq 8194 prsrlem1 10284 ltsrpr 10289 0nsr 10291 divsfval 16666 sylow1lem3 18476 sylow1lem5 18478 sylow2a 18495 vitalilem2 23903 vitalilem3 23904 vitalilem5 23906 |
Copyright terms: Public domain | W3C validator |