![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erdm | Structured version Visualization version GIF version |
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 8763 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp2bi 1146 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∪ cun 3974 ⊆ wss 3976 ◡ccnv 5699 dom cdm 5700 ∘ ccom 5704 Rel wrel 5705 Er wer 8760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-er 8763 |
This theorem is referenced by: ercl 8774 erref 8783 errn 8785 erssxp 8786 erexb 8788 ereldm 8813 uniqs2 8837 iiner 8847 eceqoveq 8880 prsrlem1 11141 ltsrpr 11146 0nsr 11148 divsfval 17607 sylow1lem3 19642 sylow1lem5 19644 sylow2a 19661 vitalilem2 25663 vitalilem3 25664 vitalilem5 25666 prjspnn0 42577 |
Copyright terms: Public domain | W3C validator |