| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erdm | Structured version Visualization version GIF version | ||
| Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 8622 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∪ cun 3895 ⊆ wss 3897 ◡ccnv 5613 dom cdm 5614 ∘ ccom 5618 Rel wrel 5619 Er wer 8619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-er 8622 |
| This theorem is referenced by: ercl 8633 erref 8642 errn 8644 erssxp 8645 erexb 8647 ereldm 8675 uniqs2 8701 iiner 8713 eceqoveq 8746 prsrlem1 10963 ltsrpr 10968 0nsr 10970 divsfval 17451 sylow1lem3 19512 sylow1lem5 19514 sylow2a 19531 vitalilem2 25537 vitalilem3 25538 vitalilem5 25540 prjspnn0 42725 |
| Copyright terms: Public domain | W3C validator |