![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erdm | Structured version Visualization version GIF version |
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 8569 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp2bi 1145 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∪ cun 3896 ⊆ wss 3898 ◡ccnv 5619 dom cdm 5620 ∘ ccom 5624 Rel wrel 5625 Er wer 8566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-er 8569 |
This theorem is referenced by: ercl 8580 erref 8589 errn 8591 erssxp 8592 erexb 8594 ereldm 8617 uniqs2 8639 iiner 8649 eceqoveq 8682 prsrlem1 10929 ltsrpr 10934 0nsr 10936 divsfval 17355 sylow1lem3 19301 sylow1lem5 19303 sylow2a 19320 vitalilem2 24879 vitalilem3 24880 vitalilem5 24882 prjspnn0 40729 |
Copyright terms: Public domain | W3C validator |