MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erdm Structured version   Visualization version   GIF version

Theorem erdm 8754
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 8744 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1145 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cun 3961  wss 3963  ccnv 5688  dom cdm 5689  ccom 5693  Rel wrel 5694   Er wer 8741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-er 8744
This theorem is referenced by:  ercl  8755  erref  8764  errn  8766  erssxp  8767  erexb  8769  ereldm  8794  uniqs2  8818  iiner  8828  eceqoveq  8861  prsrlem1  11110  ltsrpr  11115  0nsr  11117  divsfval  17594  sylow1lem3  19633  sylow1lem5  19635  sylow2a  19652  vitalilem2  25658  vitalilem3  25659  vitalilem5  25661  prjspnn0  42609
  Copyright terms: Public domain W3C validator