| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erdm | Structured version Visualization version GIF version | ||
| Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 8625 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3901 ⊆ wss 3903 ◡ccnv 5618 dom cdm 5619 ∘ ccom 5623 Rel wrel 5624 Er wer 8622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-er 8625 |
| This theorem is referenced by: ercl 8636 erref 8645 errn 8647 erssxp 8648 erexb 8650 ereldm 8678 uniqs2 8704 iiner 8716 eceqoveq 8749 prsrlem1 10966 ltsrpr 10971 0nsr 10973 divsfval 17451 sylow1lem3 19479 sylow1lem5 19481 sylow2a 19498 vitalilem2 25508 vitalilem3 25509 vitalilem5 25511 prjspnn0 42605 |
| Copyright terms: Public domain | W3C validator |