MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erdm Structured version   Visualization version   GIF version

Theorem erdm 8091
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 8081 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1126 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  cun 3823  wss 3825  ccnv 5399  dom cdm 5400  ccom 5404  Rel wrel 5405   Er wer 8078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 388  df-3an 1070  df-er 8081
This theorem is referenced by:  ercl  8092  erref  8101  errn  8103  erssxp  8104  erexb  8106  ereldm  8129  uniqs2  8151  iiner  8161  eceqoveq  8194  prsrlem1  10284  ltsrpr  10289  0nsr  10291  divsfval  16666  sylow1lem3  18476  sylow1lem5  18478  sylow2a  18495  vitalilem2  23903  vitalilem3  23904  vitalilem5  23906
  Copyright terms: Public domain W3C validator