| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erdm | Structured version Visualization version GIF version | ||
| Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 8674 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3915 ⊆ wss 3917 ◡ccnv 5640 dom cdm 5641 ∘ ccom 5645 Rel wrel 5646 Er wer 8671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-er 8674 |
| This theorem is referenced by: ercl 8685 erref 8694 errn 8696 erssxp 8697 erexb 8699 ereldm 8727 uniqs2 8753 iiner 8765 eceqoveq 8798 prsrlem1 11032 ltsrpr 11037 0nsr 11039 divsfval 17517 sylow1lem3 19537 sylow1lem5 19539 sylow2a 19556 vitalilem2 25517 vitalilem3 25518 vitalilem5 25520 prjspnn0 42617 |
| Copyright terms: Public domain | W3C validator |