MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erdm Structured version   Visualization version   GIF version

Theorem erdm 8508
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 8498 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1145 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cun 3885  wss 3887  ccnv 5588  dom cdm 5589  ccom 5593  Rel wrel 5594   Er wer 8495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-er 8498
This theorem is referenced by:  ercl  8509  erref  8518  errn  8520  erssxp  8521  erexb  8523  ereldm  8546  uniqs2  8568  iiner  8578  eceqoveq  8611  prsrlem1  10828  ltsrpr  10833  0nsr  10835  divsfval  17258  sylow1lem3  19205  sylow1lem5  19207  sylow2a  19224  vitalilem2  24773  vitalilem3  24774  vitalilem5  24776
  Copyright terms: Public domain W3C validator