MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erdm Structured version   Visualization version   GIF version

Theorem erdm 8635
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 8625 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1146 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3901  wss 3903  ccnv 5618  dom cdm 5619  ccom 5623  Rel wrel 5624   Er wer 8622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-er 8625
This theorem is referenced by:  ercl  8636  erref  8645  errn  8647  erssxp  8648  erexb  8650  ereldm  8678  uniqs2  8704  iiner  8716  eceqoveq  8749  prsrlem1  10966  ltsrpr  10971  0nsr  10973  divsfval  17451  sylow1lem3  19479  sylow1lem5  19481  sylow2a  19498  vitalilem2  25508  vitalilem3  25509  vitalilem5  25511  prjspnn0  42605
  Copyright terms: Public domain W3C validator