MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erdm Structured version   Visualization version   GIF version

Theorem erdm 8466
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 8456 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1144 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cun 3881  wss 3883  ccnv 5579  dom cdm 5580  ccom 5584  Rel wrel 5585   Er wer 8453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-er 8456
This theorem is referenced by:  ercl  8467  erref  8476  errn  8478  erssxp  8479  erexb  8481  ereldm  8504  uniqs2  8526  iiner  8536  eceqoveq  8569  prsrlem1  10759  ltsrpr  10764  0nsr  10766  divsfval  17175  sylow1lem3  19120  sylow1lem5  19122  sylow2a  19139  vitalilem2  24678  vitalilem3  24679  vitalilem5  24681
  Copyright terms: Public domain W3C validator