MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erdm Structured version   Visualization version   GIF version

Theorem erdm 8401
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 8391 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1148 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  cun 3864  wss 3866  ccnv 5550  dom cdm 5551  ccom 5555  Rel wrel 5556   Er wer 8388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091  df-er 8391
This theorem is referenced by:  ercl  8402  erref  8411  errn  8413  erssxp  8414  erexb  8416  ereldm  8439  uniqs2  8461  iiner  8471  eceqoveq  8504  prsrlem1  10686  ltsrpr  10691  0nsr  10693  divsfval  17052  sylow1lem3  18989  sylow1lem5  18991  sylow2a  19008  vitalilem2  24506  vitalilem3  24507  vitalilem5  24509
  Copyright terms: Public domain W3C validator