MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erdm Structured version   Visualization version   GIF version

Theorem erdm 8579
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 8569 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1145 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3896  wss 3898  ccnv 5619  dom cdm 5620  ccom 5624  Rel wrel 5625   Er wer 8566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-er 8569
This theorem is referenced by:  ercl  8580  erref  8589  errn  8591  erssxp  8592  erexb  8594  ereldm  8617  uniqs2  8639  iiner  8649  eceqoveq  8682  prsrlem1  10929  ltsrpr  10934  0nsr  10936  divsfval  17355  sylow1lem3  19301  sylow1lem5  19303  sylow2a  19320  vitalilem2  24879  vitalilem3  24880  vitalilem5  24882  prjspnn0  40729
  Copyright terms: Public domain W3C validator