| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erdm | Structured version Visualization version GIF version | ||
| Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 8671 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3912 ⊆ wss 3914 ◡ccnv 5637 dom cdm 5638 ∘ ccom 5642 Rel wrel 5643 Er wer 8668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-er 8671 |
| This theorem is referenced by: ercl 8682 erref 8691 errn 8693 erssxp 8694 erexb 8696 ereldm 8724 uniqs2 8750 iiner 8762 eceqoveq 8795 prsrlem1 11025 ltsrpr 11030 0nsr 11032 divsfval 17510 sylow1lem3 19530 sylow1lem5 19532 sylow2a 19549 vitalilem2 25510 vitalilem3 25511 vitalilem5 25513 prjspnn0 42610 |
| Copyright terms: Public domain | W3C validator |