Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > erdm | Structured version Visualization version GIF version |
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 8498 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp2bi 1145 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ cun 3885 ⊆ wss 3887 ◡ccnv 5588 dom cdm 5589 ∘ ccom 5593 Rel wrel 5594 Er wer 8495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-er 8498 |
This theorem is referenced by: ercl 8509 erref 8518 errn 8520 erssxp 8521 erexb 8523 ereldm 8546 uniqs2 8568 iiner 8578 eceqoveq 8611 prsrlem1 10828 ltsrpr 10833 0nsr 10835 divsfval 17258 sylow1lem3 19205 sylow1lem5 19207 sylow2a 19224 vitalilem2 24773 vitalilem3 24774 vitalilem5 24776 |
Copyright terms: Public domain | W3C validator |