MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erref Structured version   Visualization version   GIF version

Theorem erref 8518
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
erref.2 (𝜑𝐴𝑋)
Assertion
Ref Expression
erref (𝜑𝐴𝑅𝐴)

Proof of Theorem erref
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 erref.2 . . . 4 (𝜑𝐴𝑋)
2 ersymb.1 . . . . 5 (𝜑𝑅 Er 𝑋)
3 erdm 8508 . . . . 5 (𝑅 Er 𝑋 → dom 𝑅 = 𝑋)
42, 3syl 17 . . . 4 (𝜑 → dom 𝑅 = 𝑋)
51, 4eleqtrrd 2842 . . 3 (𝜑𝐴 ∈ dom 𝑅)
6 eldmg 5807 . . . 4 (𝐴𝑋 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
71, 6syl 17 . . 3 (𝜑 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
85, 7mpbid 231 . 2 (𝜑 → ∃𝑥 𝐴𝑅𝑥)
92adantr 481 . . 3 ((𝜑𝐴𝑅𝑥) → 𝑅 Er 𝑋)
10 simpr 485 . . 3 ((𝜑𝐴𝑅𝑥) → 𝐴𝑅𝑥)
119, 10, 10ertr4d 8517 . 2 ((𝜑𝐴𝑅𝑥) → 𝐴𝑅𝐴)
128, 11exlimddv 1938 1 (𝜑𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106   class class class wbr 5074  dom cdm 5589   Er wer 8495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-er 8498
This theorem is referenced by:  iserd  8524  erth  8547  iiner  8578  erinxp  8580  nqerid  10689  enqeq  10690  qusgrp  18811  sylow2alem1  19222  sylow2alem2  19223  sylow2a  19224  efginvrel2  19333  efgsrel  19340  efgcpbllemb  19361  frgp0  19366  frgpnabllem1  19474  frgpnabllem2  19475  pcophtb  24192  pi1xfrf  24216  pi1xfr  24218  pi1xfrcnvlem  24219  prtlem10  36879  prjspner01  40462  prjspner1  40463
  Copyright terms: Public domain W3C validator