Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > erref | Structured version Visualization version GIF version |
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
erref.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Ref | Expression |
---|---|
erref | ⊢ (𝜑 → 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erref.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | ersymb.1 | . . . . 5 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
3 | erdm 8508 | . . . . 5 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
5 | 1, 4 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
6 | eldmg 5807 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
7 | 1, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
8 | 5, 7 | mpbid 231 | . 2 ⊢ (𝜑 → ∃𝑥 𝐴𝑅𝑥) |
9 | 2 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝑅 Er 𝑋) |
10 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝑥) | |
11 | 9, 10, 10 | ertr4d 8517 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝐴) |
12 | 8, 11 | exlimddv 1938 | 1 ⊢ (𝜑 → 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 class class class wbr 5074 dom cdm 5589 Er wer 8495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-er 8498 |
This theorem is referenced by: iserd 8524 erth 8547 iiner 8578 erinxp 8580 nqerid 10689 enqeq 10690 qusgrp 18811 sylow2alem1 19222 sylow2alem2 19223 sylow2a 19224 efginvrel2 19333 efgsrel 19340 efgcpbllemb 19361 frgp0 19366 frgpnabllem1 19474 frgpnabllem2 19475 pcophtb 24192 pi1xfrf 24216 pi1xfr 24218 pi1xfrcnvlem 24219 prtlem10 36879 prjspner01 40462 prjspner1 40463 |
Copyright terms: Public domain | W3C validator |