| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erref | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| erref.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| erref | ⊢ (𝜑 → 𝐴𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erref.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | ersymb.1 | . . . . 5 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 3 | erdm 8632 | . . . . 5 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
| 5 | 1, 4 | eleqtrrd 2834 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
| 6 | eldmg 5838 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
| 7 | 1, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
| 8 | 5, 7 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑥 𝐴𝑅𝑥) |
| 9 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝑅 Er 𝑋) |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝑥) | |
| 11 | 9, 10, 10 | ertr4d 8641 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝐴) |
| 12 | 8, 11 | exlimddv 1936 | 1 ⊢ (𝜑 → 𝐴𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 class class class wbr 5091 dom cdm 5616 Er wer 8619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-er 8622 |
| This theorem is referenced by: iserd 8648 ecref 8667 erth 8676 iiner 8713 erinxp 8715 nqerid 10821 enqeq 10822 qusgrp 19096 sylow2alem1 19527 sylow2alem2 19528 sylow2a 19529 efginvrel2 19637 efgsrel 19644 efgcpbllemb 19665 frgp0 19670 frgpnabllem1 19783 frgpnabllem2 19784 pcophtb 24954 pi1xfrf 24978 pi1xfr 24980 pi1xfrcnvlem 24981 prtlem10 38903 prjspner01 42657 prjspner1 42658 |
| Copyright terms: Public domain | W3C validator |