| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erref | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| erref.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| erref | ⊢ (𝜑 → 𝐴𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erref.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | ersymb.1 | . . . . 5 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 3 | erdm 8684 | . . . . 5 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
| 5 | 1, 4 | eleqtrrd 2832 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
| 6 | eldmg 5865 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
| 7 | 1, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
| 8 | 5, 7 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑥 𝐴𝑅𝑥) |
| 9 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝑅 Er 𝑋) |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝑥) | |
| 11 | 9, 10, 10 | ertr4d 8693 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝐴) |
| 12 | 8, 11 | exlimddv 1935 | 1 ⊢ (𝜑 → 𝐴𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5110 dom cdm 5641 Er wer 8671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-er 8674 |
| This theorem is referenced by: iserd 8700 ecref 8719 erth 8728 iiner 8765 erinxp 8767 nqerid 10893 enqeq 10894 qusgrp 19125 sylow2alem1 19554 sylow2alem2 19555 sylow2a 19556 efginvrel2 19664 efgsrel 19671 efgcpbllemb 19692 frgp0 19697 frgpnabllem1 19810 frgpnabllem2 19811 pcophtb 24936 pi1xfrf 24960 pi1xfr 24962 pi1xfrcnvlem 24963 prtlem10 38865 prjspner01 42620 prjspner1 42621 |
| Copyright terms: Public domain | W3C validator |