MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erref Structured version   Visualization version   GIF version

Theorem erref 8642
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
erref.2 (𝜑𝐴𝑋)
Assertion
Ref Expression
erref (𝜑𝐴𝑅𝐴)

Proof of Theorem erref
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 erref.2 . . . 4 (𝜑𝐴𝑋)
2 ersymb.1 . . . . 5 (𝜑𝑅 Er 𝑋)
3 erdm 8632 . . . . 5 (𝑅 Er 𝑋 → dom 𝑅 = 𝑋)
42, 3syl 17 . . . 4 (𝜑 → dom 𝑅 = 𝑋)
51, 4eleqtrrd 2834 . . 3 (𝜑𝐴 ∈ dom 𝑅)
6 eldmg 5838 . . . 4 (𝐴𝑋 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
71, 6syl 17 . . 3 (𝜑 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
85, 7mpbid 232 . 2 (𝜑 → ∃𝑥 𝐴𝑅𝑥)
92adantr 480 . . 3 ((𝜑𝐴𝑅𝑥) → 𝑅 Er 𝑋)
10 simpr 484 . . 3 ((𝜑𝐴𝑅𝑥) → 𝐴𝑅𝑥)
119, 10, 10ertr4d 8641 . 2 ((𝜑𝐴𝑅𝑥) → 𝐴𝑅𝐴)
128, 11exlimddv 1936 1 (𝜑𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111   class class class wbr 5091  dom cdm 5616   Er wer 8619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-er 8622
This theorem is referenced by:  iserd  8648  ecref  8667  erth  8676  iiner  8713  erinxp  8715  nqerid  10821  enqeq  10822  qusgrp  19096  sylow2alem1  19527  sylow2alem2  19528  sylow2a  19529  efginvrel2  19637  efgsrel  19644  efgcpbllemb  19665  frgp0  19670  frgpnabllem1  19783  frgpnabllem2  19784  pcophtb  24954  pi1xfrf  24978  pi1xfr  24980  pi1xfrcnvlem  24981  prtlem10  38903  prjspner01  42657  prjspner1  42658
  Copyright terms: Public domain W3C validator