| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > erref | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| erref.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| erref | ⊢ (𝜑 → 𝐴𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erref.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | ersymb.1 | . . . . 5 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 3 | erdm 8638 | . . . . 5 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
| 5 | 1, 4 | eleqtrrd 2836 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
| 6 | eldmg 5842 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
| 7 | 1, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
| 8 | 5, 7 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑥 𝐴𝑅𝑥) |
| 9 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝑅 Er 𝑋) |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝑥) | |
| 11 | 9, 10, 10 | ertr4d 8647 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝐴) |
| 12 | 8, 11 | exlimddv 1936 | 1 ⊢ (𝜑 → 𝐴𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 class class class wbr 5093 dom cdm 5619 Er wer 8625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-er 8628 |
| This theorem is referenced by: iserd 8654 ecref 8673 erth 8682 iiner 8719 erinxp 8721 nqerid 10831 enqeq 10832 qusgrp 19100 sylow2alem1 19531 sylow2alem2 19532 sylow2a 19533 efginvrel2 19641 efgsrel 19648 efgcpbllemb 19669 frgp0 19674 frgpnabllem1 19787 frgpnabllem2 19788 pcophtb 24957 pi1xfrf 24981 pi1xfr 24983 pi1xfrcnvlem 24984 prtlem10 38984 prjspner01 42743 prjspner1 42744 chnerlem1 47004 chner 47007 |
| Copyright terms: Public domain | W3C validator |