MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erref Structured version   Visualization version   GIF version

Theorem erref 8648
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
erref.2 (𝜑𝐴𝑋)
Assertion
Ref Expression
erref (𝜑𝐴𝑅𝐴)

Proof of Theorem erref
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 erref.2 . . . 4 (𝜑𝐴𝑋)
2 ersymb.1 . . . . 5 (𝜑𝑅 Er 𝑋)
3 erdm 8638 . . . . 5 (𝑅 Er 𝑋 → dom 𝑅 = 𝑋)
42, 3syl 17 . . . 4 (𝜑 → dom 𝑅 = 𝑋)
51, 4eleqtrrd 2836 . . 3 (𝜑𝐴 ∈ dom 𝑅)
6 eldmg 5842 . . . 4 (𝐴𝑋 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
71, 6syl 17 . . 3 (𝜑 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
85, 7mpbid 232 . 2 (𝜑 → ∃𝑥 𝐴𝑅𝑥)
92adantr 480 . . 3 ((𝜑𝐴𝑅𝑥) → 𝑅 Er 𝑋)
10 simpr 484 . . 3 ((𝜑𝐴𝑅𝑥) → 𝐴𝑅𝑥)
119, 10, 10ertr4d 8647 . 2 ((𝜑𝐴𝑅𝑥) → 𝐴𝑅𝐴)
128, 11exlimddv 1936 1 (𝜑𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113   class class class wbr 5093  dom cdm 5619   Er wer 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-er 8628
This theorem is referenced by:  iserd  8654  ecref  8673  erth  8682  iiner  8719  erinxp  8721  nqerid  10831  enqeq  10832  qusgrp  19100  sylow2alem1  19531  sylow2alem2  19532  sylow2a  19533  efginvrel2  19641  efgsrel  19648  efgcpbllemb  19669  frgp0  19674  frgpnabllem1  19787  frgpnabllem2  19788  pcophtb  24957  pi1xfrf  24981  pi1xfr  24983  pi1xfrcnvlem  24984  prtlem10  38984  prjspner01  42743  prjspner1  42744  chnerlem1  47004  chner  47007
  Copyright terms: Public domain W3C validator