Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > erref | Structured version Visualization version GIF version |
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
erref.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Ref | Expression |
---|---|
erref | ⊢ (𝜑 → 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erref.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | ersymb.1 | . . . . 5 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
3 | erdm 8466 | . . . . 5 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
5 | 1, 4 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
6 | eldmg 5796 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
7 | 1, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
8 | 5, 7 | mpbid 231 | . 2 ⊢ (𝜑 → ∃𝑥 𝐴𝑅𝑥) |
9 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝑅 Er 𝑋) |
10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝑥) | |
11 | 9, 10, 10 | ertr4d 8475 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝐴) |
12 | 8, 11 | exlimddv 1939 | 1 ⊢ (𝜑 → 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 class class class wbr 5070 dom cdm 5580 Er wer 8453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-er 8456 |
This theorem is referenced by: iserd 8482 erth 8505 iiner 8536 erinxp 8538 nqerid 10620 enqeq 10621 qusgrp 18726 sylow2alem1 19137 sylow2alem2 19138 sylow2a 19139 efginvrel2 19248 efgsrel 19255 efgcpbllemb 19276 frgp0 19281 frgpnabllem1 19389 frgpnabllem2 19390 pcophtb 24098 pi1xfrf 24122 pi1xfr 24124 pi1xfrcnvlem 24125 prtlem10 36806 prjspner01 40383 prjspner1 40384 |
Copyright terms: Public domain | W3C validator |