MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertr Structured version   Visualization version   GIF version

Theorem ertr 8686
Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
Assertion
Ref Expression
ertr (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))

Proof of Theorem ertr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ersymb.1 . . . . . . 7 (𝜑𝑅 Er 𝑋)
2 errel 8680 . . . . . . 7 (𝑅 Er 𝑋 → Rel 𝑅)
31, 2syl 17 . . . . . 6 (𝜑 → Rel 𝑅)
4 simpr 484 . . . . . 6 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐵𝑅𝐶)
5 brrelex1 5691 . . . . . 6 ((Rel 𝑅𝐵𝑅𝐶) → 𝐵 ∈ V)
63, 4, 5syl2an 596 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐵 ∈ V)
7 simpr 484 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → (𝐴𝑅𝐵𝐵𝑅𝐶))
8 breq2 5111 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
9 breq1 5110 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝑅𝐶𝐵𝑅𝐶))
108, 9anbi12d 632 . . . . 5 (𝑥 = 𝐵 → ((𝐴𝑅𝑥𝑥𝑅𝐶) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
116, 7, 10spcedv 3564 . . . 4 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶))
12 simpl 482 . . . . . 6 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐵)
13 brrelex1 5691 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
143, 12, 13syl2an 596 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴 ∈ V)
15 brrelex2 5692 . . . . . 6 ((Rel 𝑅𝐵𝑅𝐶) → 𝐶 ∈ V)
163, 4, 15syl2an 596 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐶 ∈ V)
17 brcog 5830 . . . . 5 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴(𝑅𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶)))
1814, 16, 17syl2anc 584 . . . 4 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → (𝐴(𝑅𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶)))
1911, 18mpbird 257 . . 3 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴(𝑅𝑅)𝐶)
2019ex 412 . 2 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴(𝑅𝑅)𝐶))
21 df-er 8671 . . . . . 6 (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
2221simp3bi 1147 . . . . 5 (𝑅 Er 𝑋 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
231, 22syl 17 . . . 4 (𝜑 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
2423unssbd 4157 . . 3 (𝜑 → (𝑅𝑅) ⊆ 𝑅)
2524ssbrd 5150 . 2 (𝜑 → (𝐴(𝑅𝑅)𝐶𝐴𝑅𝐶))
2620, 25syld 47 1 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  cun 3912  wss 3914   class class class wbr 5107  ccnv 5637  dom cdm 5638  ccom 5642  Rel wrel 5643   Er wer 8668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-co 5647  df-er 8671
This theorem is referenced by:  ertrd  8687  erth  8725  iiner  8762  entr  8977  efginvrel2  19657  efgsrel  19664
  Copyright terms: Public domain W3C validator