MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ereq1 Structured version   Visualization version   GIF version

Theorem ereq1 8752
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq1 (𝑅 = 𝑆 → (𝑅 Er 𝐴𝑆 Er 𝐴))

Proof of Theorem ereq1
StepHypRef Expression
1 releq 5786 . . 3 (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆))
2 dmeq 5914 . . . 4 (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆)
32eqeq1d 2739 . . 3 (𝑅 = 𝑆 → (dom 𝑅 = 𝐴 ↔ dom 𝑆 = 𝐴))
4 cnveq 5884 . . . . . 6 (𝑅 = 𝑆𝑅 = 𝑆)
5 coeq1 5868 . . . . . . 7 (𝑅 = 𝑆 → (𝑅𝑅) = (𝑆𝑅))
6 coeq2 5869 . . . . . . 7 (𝑅 = 𝑆 → (𝑆𝑅) = (𝑆𝑆))
75, 6eqtrd 2777 . . . . . 6 (𝑅 = 𝑆 → (𝑅𝑅) = (𝑆𝑆))
84, 7uneq12d 4169 . . . . 5 (𝑅 = 𝑆 → (𝑅 ∪ (𝑅𝑅)) = (𝑆 ∪ (𝑆𝑆)))
98sseq1d 4015 . . . 4 (𝑅 = 𝑆 → ((𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅 ↔ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑅))
10 sseq2 4010 . . . 4 (𝑅 = 𝑆 → ((𝑆 ∪ (𝑆𝑆)) ⊆ 𝑅 ↔ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆))
119, 10bitrd 279 . . 3 (𝑅 = 𝑆 → ((𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅 ↔ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆))
121, 3, 113anbi123d 1438 . 2 (𝑅 = 𝑆 → ((Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅) ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆)))
13 df-er 8745 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
14 df-er 8745 . 2 (𝑆 Er 𝐴 ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆))
1512, 13, 143bitr4g 314 1 (𝑅 = 𝑆 → (𝑅 Er 𝐴𝑆 Er 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  cun 3949  wss 3951  ccnv 5684  dom cdm 5685  ccom 5689  Rel wrel 5690   Er wer 8742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-er 8745
This theorem is referenced by:  riiner  8830  efglem  19734  efger  19736  efgrelexlemb  19768  efgcpbllemb  19773  frgpuplem  19790  tgjustf  28481  qtophaus  33835  pstmxmet  33896  prjspner  42629
  Copyright terms: Public domain W3C validator