![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ereq1 | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ereq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Er 𝐴 ↔ 𝑆 Er 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releq 5789 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
2 | dmeq 5917 | . . . 4 ⊢ (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆) | |
3 | 2 | eqeq1d 2737 | . . 3 ⊢ (𝑅 = 𝑆 → (dom 𝑅 = 𝐴 ↔ dom 𝑆 = 𝐴)) |
4 | cnveq 5887 | . . . . . 6 ⊢ (𝑅 = 𝑆 → ◡𝑅 = ◡𝑆) | |
5 | coeq1 5871 | . . . . . . 7 ⊢ (𝑅 = 𝑆 → (𝑅 ∘ 𝑅) = (𝑆 ∘ 𝑅)) | |
6 | coeq2 5872 | . . . . . . 7 ⊢ (𝑅 = 𝑆 → (𝑆 ∘ 𝑅) = (𝑆 ∘ 𝑆)) | |
7 | 5, 6 | eqtrd 2775 | . . . . . 6 ⊢ (𝑅 = 𝑆 → (𝑅 ∘ 𝑅) = (𝑆 ∘ 𝑆)) |
8 | 4, 7 | uneq12d 4179 | . . . . 5 ⊢ (𝑅 = 𝑆 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) = (◡𝑆 ∪ (𝑆 ∘ 𝑆))) |
9 | 8 | sseq1d 4027 | . . . 4 ⊢ (𝑅 = 𝑆 → ((◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅 ↔ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑅)) |
10 | sseq2 4022 | . . . 4 ⊢ (𝑅 = 𝑆 → ((◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑅 ↔ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆)) | |
11 | 9, 10 | bitrd 279 | . . 3 ⊢ (𝑅 = 𝑆 → ((◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅 ↔ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆)) |
12 | 1, 3, 11 | 3anbi123d 1435 | . 2 ⊢ (𝑅 = 𝑆 → ((Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆))) |
13 | df-er 8744 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
14 | df-er 8744 | . 2 ⊢ (𝑆 Er 𝐴 ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆)) | |
15 | 12, 13, 14 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Er 𝐴 ↔ 𝑆 Er 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∪ cun 3961 ⊆ wss 3963 ◡ccnv 5688 dom cdm 5689 ∘ ccom 5693 Rel wrel 5694 Er wer 8741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-er 8744 |
This theorem is referenced by: riiner 8829 efglem 19749 efger 19751 efgrelexlemb 19783 efgcpbllemb 19788 frgpuplem 19805 tgjustf 28496 qtophaus 33797 pstmxmet 33858 prjspner 42606 |
Copyright terms: Public domain | W3C validator |