![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ereq1 | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ereq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Er 𝐴 ↔ 𝑆 Er 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releq 5777 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
2 | dmeq 5904 | . . . 4 ⊢ (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆) | |
3 | 2 | eqeq1d 2732 | . . 3 ⊢ (𝑅 = 𝑆 → (dom 𝑅 = 𝐴 ↔ dom 𝑆 = 𝐴)) |
4 | cnveq 5874 | . . . . . 6 ⊢ (𝑅 = 𝑆 → ◡𝑅 = ◡𝑆) | |
5 | coeq1 5858 | . . . . . . 7 ⊢ (𝑅 = 𝑆 → (𝑅 ∘ 𝑅) = (𝑆 ∘ 𝑅)) | |
6 | coeq2 5859 | . . . . . . 7 ⊢ (𝑅 = 𝑆 → (𝑆 ∘ 𝑅) = (𝑆 ∘ 𝑆)) | |
7 | 5, 6 | eqtrd 2770 | . . . . . 6 ⊢ (𝑅 = 𝑆 → (𝑅 ∘ 𝑅) = (𝑆 ∘ 𝑆)) |
8 | 4, 7 | uneq12d 4165 | . . . . 5 ⊢ (𝑅 = 𝑆 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) = (◡𝑆 ∪ (𝑆 ∘ 𝑆))) |
9 | 8 | sseq1d 4014 | . . . 4 ⊢ (𝑅 = 𝑆 → ((◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅 ↔ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑅)) |
10 | sseq2 4009 | . . . 4 ⊢ (𝑅 = 𝑆 → ((◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑅 ↔ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆)) | |
11 | 9, 10 | bitrd 278 | . . 3 ⊢ (𝑅 = 𝑆 → ((◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅 ↔ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆)) |
12 | 1, 3, 11 | 3anbi123d 1434 | . 2 ⊢ (𝑅 = 𝑆 → ((Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆))) |
13 | df-er 8707 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
14 | df-er 8707 | . 2 ⊢ (𝑆 Er 𝐴 ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆)) | |
15 | 12, 13, 14 | 3bitr4g 313 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Er 𝐴 ↔ 𝑆 Er 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∪ cun 3947 ⊆ wss 3949 ◡ccnv 5676 dom cdm 5677 ∘ ccom 5681 Rel wrel 5682 Er wer 8704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-er 8707 |
This theorem is referenced by: riiner 8788 efglem 19627 efger 19629 efgrelexlemb 19661 efgcpbllemb 19666 frgpuplem 19683 tgjustf 27989 qtophaus 33112 pstmxmet 33173 prjspner 41665 |
Copyright terms: Public domain | W3C validator |