MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ereq1 Structured version   Visualization version   GIF version

Theorem ereq1 8725
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq1 (𝑅 = 𝑆 → (𝑅 Er 𝐴𝑆 Er 𝐴))

Proof of Theorem ereq1
StepHypRef Expression
1 releq 5772 . . 3 (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆))
2 dmeq 5900 . . . 4 (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆)
32eqeq1d 2729 . . 3 (𝑅 = 𝑆 → (dom 𝑅 = 𝐴 ↔ dom 𝑆 = 𝐴))
4 cnveq 5870 . . . . . 6 (𝑅 = 𝑆𝑅 = 𝑆)
5 coeq1 5854 . . . . . . 7 (𝑅 = 𝑆 → (𝑅𝑅) = (𝑆𝑅))
6 coeq2 5855 . . . . . . 7 (𝑅 = 𝑆 → (𝑆𝑅) = (𝑆𝑆))
75, 6eqtrd 2767 . . . . . 6 (𝑅 = 𝑆 → (𝑅𝑅) = (𝑆𝑆))
84, 7uneq12d 4160 . . . . 5 (𝑅 = 𝑆 → (𝑅 ∪ (𝑅𝑅)) = (𝑆 ∪ (𝑆𝑆)))
98sseq1d 4009 . . . 4 (𝑅 = 𝑆 → ((𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅 ↔ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑅))
10 sseq2 4004 . . . 4 (𝑅 = 𝑆 → ((𝑆 ∪ (𝑆𝑆)) ⊆ 𝑅 ↔ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆))
119, 10bitrd 279 . . 3 (𝑅 = 𝑆 → ((𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅 ↔ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆))
121, 3, 113anbi123d 1433 . 2 (𝑅 = 𝑆 → ((Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅) ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆)))
13 df-er 8718 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
14 df-er 8718 . 2 (𝑆 Er 𝐴 ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆))
1512, 13, 143bitr4g 314 1 (𝑅 = 𝑆 → (𝑅 Er 𝐴𝑆 Er 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1534  cun 3942  wss 3944  ccnv 5671  dom cdm 5672  ccom 5676  Rel wrel 5677   Er wer 8715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-er 8718
This theorem is referenced by:  riiner  8800  efglem  19662  efger  19664  efgrelexlemb  19696  efgcpbllemb  19701  frgpuplem  19718  tgjustf  28264  qtophaus  33373  pstmxmet  33434  prjspner  41965
  Copyright terms: Public domain W3C validator