| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-gsum 17488 | . . 3
⊢ 
Σg = (𝑤 ∈ V, 𝑔 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑔 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑔 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛))), (℩𝑥∃𝑓[(◡𝑔 “ (V ∖ 𝑜)) / 𝑦](𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦))))))) | 
| 2 | 1 | a1i 11 | . 2
⊢ (𝜑 → Σg
= (𝑤 ∈ V, 𝑔 ∈ V ↦
⦋{𝑥 ∈
(Base‘𝑤) ∣
∀𝑦 ∈
(Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑔 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑔 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛))), (℩𝑥∃𝑓[(◡𝑔 “ (V ∖ 𝑜)) / 𝑦](𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦)))))))) | 
| 3 |  | simprl 770 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → 𝑤 = 𝐺) | 
| 4 | 3 | fveq2d 6909 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (Base‘𝑤) = (Base‘𝐺)) | 
| 5 |  | gsumval.b | . . . . . . 7
⊢ 𝐵 = (Base‘𝐺) | 
| 6 | 4, 5 | eqtr4di 2794 | . . . . . 6
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (Base‘𝑤) = 𝐵) | 
| 7 | 3 | fveq2d 6909 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (+g‘𝑤) = (+g‘𝐺)) | 
| 8 |  | gsumval.p | . . . . . . . . . . 11
⊢  + =
(+g‘𝐺) | 
| 9 | 7, 8 | eqtr4di 2794 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (+g‘𝑤) = + ) | 
| 10 | 9 | oveqd 7449 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (𝑥(+g‘𝑤)𝑦) = (𝑥 + 𝑦)) | 
| 11 | 10 | eqeq1d 2738 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → ((𝑥(+g‘𝑤)𝑦) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑦)) | 
| 12 | 9 | oveqd 7449 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (𝑦(+g‘𝑤)𝑥) = (𝑦 + 𝑥)) | 
| 13 | 12 | eqeq1d 2738 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → ((𝑦(+g‘𝑤)𝑥) = 𝑦 ↔ (𝑦 + 𝑥) = 𝑦)) | 
| 14 | 11, 13 | anbi12d 632 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦) ↔ ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) | 
| 15 | 6, 14 | raleqbidv 3345 | . . . . . 6
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) | 
| 16 | 6, 15 | rabeqbidv 3454 | . . . . 5
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → {𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) | 
| 17 |  | gsumval.o | . . . . . 6
⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} | 
| 18 |  | oveq2 7440 | . . . . . . . . . . 11
⊢ (𝑡 = 𝑦 → (𝑠 + 𝑡) = (𝑠 + 𝑦)) | 
| 19 |  | id 22 | . . . . . . . . . . 11
⊢ (𝑡 = 𝑦 → 𝑡 = 𝑦) | 
| 20 | 18, 19 | eqeq12d 2752 | . . . . . . . . . 10
⊢ (𝑡 = 𝑦 → ((𝑠 + 𝑡) = 𝑡 ↔ (𝑠 + 𝑦) = 𝑦)) | 
| 21 |  | oveq1 7439 | . . . . . . . . . . 11
⊢ (𝑡 = 𝑦 → (𝑡 + 𝑠) = (𝑦 + 𝑠)) | 
| 22 | 21, 19 | eqeq12d 2752 | . . . . . . . . . 10
⊢ (𝑡 = 𝑦 → ((𝑡 + 𝑠) = 𝑡 ↔ (𝑦 + 𝑠) = 𝑦)) | 
| 23 | 20, 22 | anbi12d 632 | . . . . . . . . 9
⊢ (𝑡 = 𝑦 → (((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡) ↔ ((𝑠 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑠) = 𝑦))) | 
| 24 | 23 | cbvralvw 3236 | . . . . . . . 8
⊢
(∀𝑡 ∈
𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡) ↔ ∀𝑦 ∈ 𝐵 ((𝑠 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑠) = 𝑦)) | 
| 25 |  | oveq1 7439 | . . . . . . . . . 10
⊢ (𝑠 = 𝑥 → (𝑠 + 𝑦) = (𝑥 + 𝑦)) | 
| 26 | 25 | eqeq1d 2738 | . . . . . . . . 9
⊢ (𝑠 = 𝑥 → ((𝑠 + 𝑦) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑦)) | 
| 27 | 26 | ovanraleqv 7456 | . . . . . . . 8
⊢ (𝑠 = 𝑥 → (∀𝑦 ∈ 𝐵 ((𝑠 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑠) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) | 
| 28 | 24, 27 | bitrid 283 | . . . . . . 7
⊢ (𝑠 = 𝑥 → (∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡) ↔ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) | 
| 29 | 28 | cbvrabv 3446 | . . . . . 6
⊢ {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | 
| 30 | 17, 29 | eqtri 2764 | . . . . 5
⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | 
| 31 | 16, 30 | eqtr4di 2794 | . . . 4
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → {𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} = 𝑂) | 
| 32 | 31 | csbeq1d 3902 | . . 3
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑔 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑔 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛))), (℩𝑥∃𝑓[(◡𝑔 “ (V ∖ 𝑜)) / 𝑦](𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦)))))) = ⦋𝑂 / 𝑜⦌if(ran 𝑔 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑔 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛))), (℩𝑥∃𝑓[(◡𝑔 “ (V ∖ 𝑜)) / 𝑦](𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦))))))) | 
| 33 | 5 | fvexi 6919 | . . . . . 6
⊢ 𝐵 ∈ V | 
| 34 | 17, 33 | rabex2 5340 | . . . . 5
⊢ 𝑂 ∈ V | 
| 35 | 34 | a1i 11 | . . . 4
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → 𝑂 ∈ V) | 
| 36 |  | simplrr 777 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → 𝑔 = 𝐹) | 
| 37 | 36 | rneqd 5948 | . . . . . 6
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → ran 𝑔 = ran 𝐹) | 
| 38 |  | simpr 484 | . . . . . 6
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → 𝑜 = 𝑂) | 
| 39 | 37, 38 | sseq12d 4016 | . . . . 5
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (ran 𝑔 ⊆ 𝑜 ↔ ran 𝐹 ⊆ 𝑂)) | 
| 40 | 3 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → 𝑤 = 𝐺) | 
| 41 | 40 | fveq2d 6909 | . . . . . 6
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (0g‘𝑤) = (0g‘𝐺)) | 
| 42 |  | gsumval.z | . . . . . 6
⊢  0 =
(0g‘𝐺) | 
| 43 | 41, 42 | eqtr4di 2794 | . . . . 5
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (0g‘𝑤) = 0 ) | 
| 44 | 36 | dmeqd 5915 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → dom 𝑔 = dom 𝐹) | 
| 45 |  | gsumvalx.a | . . . . . . . . 9
⊢ (𝜑 → dom 𝐹 = 𝐴) | 
| 46 | 45 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → dom 𝐹 = 𝐴) | 
| 47 | 44, 46 | eqtrd 2776 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → dom 𝑔 = 𝐴) | 
| 48 | 47 | eleq1d 2825 | . . . . . 6
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (dom 𝑔 ∈ ran ... ↔ 𝐴 ∈ ran ...)) | 
| 49 | 47 | eqeq1d 2738 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (dom 𝑔 = (𝑚...𝑛) ↔ 𝐴 = (𝑚...𝑛))) | 
| 50 | 9 | adantr 480 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (+g‘𝑤) = + ) | 
| 51 | 50 | seqeq2d 14050 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → seq𝑚((+g‘𝑤), 𝑔) = seq𝑚( + , 𝑔)) | 
| 52 | 36 | seqeq3d 14051 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → seq𝑚( + , 𝑔) = seq𝑚( + , 𝐹)) | 
| 53 | 51, 52 | eqtrd 2776 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → seq𝑚((+g‘𝑤), 𝑔) = seq𝑚( + , 𝐹)) | 
| 54 | 53 | fveq1d 6907 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (seq𝑚((+g‘𝑤), 𝑔)‘𝑛) = (seq𝑚( + , 𝐹)‘𝑛)) | 
| 55 | 54 | eqeq2d 2747 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛) ↔ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) | 
| 56 | 49, 55 | anbi12d 632 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → ((dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛)) ↔ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) | 
| 57 | 56 | rexbidv 3178 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) | 
| 58 | 57 | exbidv 1920 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛)) ↔ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) | 
| 59 | 58 | iotabidv 6544 | . . . . . 6
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛))) = (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) | 
| 60 | 38 | difeq2d 4125 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (V ∖ 𝑜) = (V ∖ 𝑂)) | 
| 61 | 60 | imaeq2d 6077 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (◡𝐹 “ (V ∖ 𝑜)) = (◡𝐹 “ (V ∖ 𝑂))) | 
| 62 | 36 | cnveqd 5885 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → ◡𝑔 = ◡𝐹) | 
| 63 | 62 | imaeq1d 6076 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (◡𝑔 “ (V ∖ 𝑜)) = (◡𝐹 “ (V ∖ 𝑜))) | 
| 64 |  | gsumval.w | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) | 
| 65 | 64 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) | 
| 66 | 61, 63, 65 | 3eqtr4d 2786 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (◡𝑔 “ (V ∖ 𝑜)) = 𝑊) | 
| 67 | 66 | sbceq1d 3792 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → ([(◡𝑔 “ (V ∖ 𝑜)) / 𝑦](𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦))) ↔ [𝑊 / 𝑦](𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦))))) | 
| 68 |  | gsumvalx.f | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ 𝑋) | 
| 69 |  | cnvexg 7947 | . . . . . . . . . . . . 13
⊢ (𝐹 ∈ 𝑋 → ◡𝐹 ∈ V) | 
| 70 |  | imaexg 7936 | . . . . . . . . . . . . 13
⊢ (◡𝐹 ∈ V → (◡𝐹 “ (V ∖ 𝑂)) ∈ V) | 
| 71 | 68, 69, 70 | 3syl 18 | . . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐹 “ (V ∖ 𝑂)) ∈ V) | 
| 72 | 64, 71 | eqeltrd 2840 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ V) | 
| 73 | 72 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → 𝑊 ∈ V) | 
| 74 |  | fveq2 6905 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑊 → (♯‘𝑦) = (♯‘𝑊)) | 
| 75 | 74 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) ∧ 𝑦 = 𝑊) → (♯‘𝑦) = (♯‘𝑊)) | 
| 76 | 75 | oveq2d 7448 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) ∧ 𝑦 = 𝑊) → (1...(♯‘𝑦)) = (1...(♯‘𝑊))) | 
| 77 | 76 | f1oeq2d 6843 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) ∧ 𝑦 = 𝑊) → (𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ↔ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑦)) | 
| 78 |  | f1oeq3 6837 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑊 → (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑦 ↔ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) | 
| 79 | 78 | adantl 481 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) ∧ 𝑦 = 𝑊) → (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑦 ↔ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) | 
| 80 | 77, 79 | bitrd 279 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) ∧ 𝑦 = 𝑊) → (𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ↔ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) | 
| 81 | 50 | seqeq2d 14050 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → seq1((+g‘𝑤), (𝑔 ∘ 𝑓)) = seq1( + , (𝑔 ∘ 𝑓))) | 
| 82 | 36 | coeq1d 5871 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (𝑔 ∘ 𝑓) = (𝐹 ∘ 𝑓)) | 
| 83 | 82 | seqeq3d 14051 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → seq1( + , (𝑔 ∘ 𝑓)) = seq1( + , (𝐹 ∘ 𝑓))) | 
| 84 | 81, 83 | eqtrd 2776 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → seq1((+g‘𝑤), (𝑔 ∘ 𝑓)) = seq1( + , (𝐹 ∘ 𝑓))) | 
| 85 | 84 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) ∧ 𝑦 = 𝑊) → seq1((+g‘𝑤), (𝑔 ∘ 𝑓)) = seq1( + , (𝐹 ∘ 𝑓))) | 
| 86 | 85, 75 | fveq12d 6912 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) ∧ 𝑦 = 𝑊) → (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦)) = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) | 
| 87 | 86 | eqeq2d 2747 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) ∧ 𝑦 = 𝑊) → (𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦)) ↔ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))) | 
| 88 | 80, 87 | anbi12d 632 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) ∧ 𝑦 = 𝑊) → ((𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦))) ↔ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) | 
| 89 | 73, 88 | sbcied 3831 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → ([𝑊 / 𝑦](𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦))) ↔ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) | 
| 90 | 67, 89 | bitrd 279 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → ([(◡𝑔 “ (V ∖ 𝑜)) / 𝑦](𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦))) ↔ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) | 
| 91 | 90 | exbidv 1920 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (∃𝑓[(◡𝑔 “ (V ∖ 𝑜)) / 𝑦](𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦))) ↔ ∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) | 
| 92 | 91 | iotabidv 6544 | . . . . . 6
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → (℩𝑥∃𝑓[(◡𝑔 “ (V ∖ 𝑜)) / 𝑦](𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦)))) = (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) | 
| 93 | 48, 59, 92 | ifbieq12d 4553 | . . . . 5
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → if(dom 𝑔 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛))), (℩𝑥∃𝑓[(◡𝑔 “ (V ∖ 𝑜)) / 𝑦](𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦))))) = if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))))) | 
| 94 | 39, 43, 93 | ifbieq12d 4553 | . . . 4
⊢ (((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) ∧ 𝑜 = 𝑂) → if(ran 𝑔 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑔 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛))), (℩𝑥∃𝑓[(◡𝑔 “ (V ∖ 𝑜)) / 𝑦](𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦)))))) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) | 
| 95 | 35, 94 | csbied 3934 | . . 3
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → ⦋𝑂 / 𝑜⦌if(ran 𝑔 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑔 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛))), (℩𝑥∃𝑓[(◡𝑔 “ (V ∖ 𝑜)) / 𝑦](𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦)))))) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) | 
| 96 | 32, 95 | eqtrd 2776 | . 2
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑔 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑔 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛))), (℩𝑥∃𝑓[(◡𝑔 “ (V ∖ 𝑜)) / 𝑦](𝑓:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑔 ∘ 𝑓))‘(♯‘𝑦)))))) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) | 
| 97 |  | gsumval.g | . . 3
⊢ (𝜑 → 𝐺 ∈ 𝑉) | 
| 98 | 97 | elexd 3503 | . 2
⊢ (𝜑 → 𝐺 ∈ V) | 
| 99 | 68 | elexd 3503 | . 2
⊢ (𝜑 → 𝐹 ∈ V) | 
| 100 | 42 | fvexi 6919 | . . . 4
⊢  0 ∈
V | 
| 101 |  | iotaex 6533 | . . . . 5
⊢
(℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) ∈ V | 
| 102 |  | iotaex 6533 | . . . . 5
⊢
(℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))) ∈ V | 
| 103 | 101, 102 | ifex 4575 | . . . 4
⊢ if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) ∈ V | 
| 104 | 100, 103 | ifex 4575 | . . 3
⊢ if(ran
𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))))) ∈ V | 
| 105 | 104 | a1i 11 | . 2
⊢ (𝜑 → if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))))) ∈ V) | 
| 106 | 2, 96, 98, 99, 105 | ovmpod 7586 | 1
⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) |