| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsum0 | Structured version Visualization version GIF version | ||
| Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsum0.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| gsum0 | ⊢ (𝐺 Σg ∅) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | gsum0.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2735 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | eqid 2735 | . . 3 ⊢ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
| 5 | id 22 | . . 3 ⊢ (𝐺 ∈ V → 𝐺 ∈ V) | |
| 6 | 0ex 5277 | . . . 4 ⊢ ∅ ∈ V | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ∅ ∈ V) |
| 8 | f0 6759 | . . . 4 ⊢ ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
| 10 | 1, 2, 3, 4, 5, 7, 9 | gsumval1 18661 | . 2 ⊢ (𝐺 ∈ V → (𝐺 Σg ∅) = 0 ) |
| 11 | df-gsum 17456 | . . . . 5 ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) | |
| 12 | 11 | reldmmpo 7541 | . . . 4 ⊢ Rel dom Σg |
| 13 | 12 | ovprc1 7444 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐺 Σg ∅) = ∅) |
| 14 | fvprc 6868 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (0g‘𝐺) = ∅) | |
| 15 | 2, 14 | eqtrid 2782 | . . 3 ⊢ (¬ 𝐺 ∈ V → 0 = ∅) |
| 16 | 13, 15 | eqtr4d 2773 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐺 Σg ∅) = 0 ) |
| 17 | 10, 16 | pm2.61i 182 | 1 ⊢ (𝐺 Σg ∅) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 {crab 3415 Vcvv 3459 [wsbc 3765 ⦋csb 3874 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 ifcif 4500 ◡ccnv 5653 dom cdm 5654 ran crn 5655 “ cima 5657 ∘ ccom 5658 ℩cio 6482 ⟶wf 6527 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 1c1 11130 ℤ≥cuz 12852 ...cfz 13524 seqcseq 14019 ♯chash 14348 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Σg cgsu 17454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-seq 14020 df-gsum 17456 |
| This theorem is referenced by: gsumwsubmcl 18815 gsumccat 18819 gsumwmhm 18823 gsumwspan 18824 frmdgsum 18840 frmdup1 18842 mulgnn0gsum 19063 gsumwrev 19349 gsmsymgrfix 19409 gsmsymgreq 19413 psgnunilem2 19476 psgn0fv0 19492 psgnsn 19501 psgnprfval1 19503 gsumconst 19915 gsumfsum 21402 mplmonmul 21994 mplcoe1 21995 mplcoe5 21998 coe1fzgsumd 22242 evl1gsumd 22295 mdet0pr 22530 madugsum 22581 tmdgsum 24033 xrge0gsumle 24773 xrge0tsms 24774 jensen 26951 xrge0tsmsd 33056 gsumwun 33059 gsumle 33092 cyc3genpmlem 33162 gsumvsca1 33223 gsumvsca2 33224 elrgspnlem2 33238 elrgspnlem4 33240 domnprodn0 33270 unitprodclb 33404 rprmdvdsprod 33549 1arithidom 33552 1arithufdlem3 33561 1arithufdlem4 33562 dfufd2lem 33564 zarcmplem 33912 esumnul 34079 esumsnf 34095 sitg0 34378 mrsub0 35538 matunitlindflem1 37640 evl1gprodd 42130 idomnnzgmulnz 42146 deg1gprod 42153 lincval0 48391 |
| Copyright terms: Public domain | W3C validator |