MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum0 Structured version   Visualization version   GIF version

Theorem gsum0 18611
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
gsum0.z 0 = (0g𝐺)
Assertion
Ref Expression
gsum0 (𝐺 Σg ∅) = 0

Proof of Theorem gsum0
Dummy variables 𝑓 𝑔 𝑚 𝑛 𝑜 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 gsum0.z . . 3 0 = (0g𝐺)
3 eqid 2729 . . 3 (+g𝐺) = (+g𝐺)
4 eqid 2729 . . 3 {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)}
5 id 22 . . 3 (𝐺 ∈ V → 𝐺 ∈ V)
6 0ex 5262 . . . 4 ∅ ∈ V
76a1i 11 . . 3 (𝐺 ∈ V → ∅ ∈ V)
8 f0 6741 . . . 4 ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)}
98a1i 11 . . 3 (𝐺 ∈ V → ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) = 𝑦 ∧ (𝑦(+g𝐺)𝑥) = 𝑦)})
101, 2, 3, 4, 5, 7, 9gsumval1 18610 . 2 (𝐺 ∈ V → (𝐺 Σg ∅) = 0 )
11 df-gsum 17405 . . . . 5 Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g𝑤)𝑦) = 𝑦 ∧ (𝑦(+g𝑤)𝑥) = 𝑦)} / 𝑜if(ran 𝑓𝑜, (0g𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))), (℩𝑥𝑔[(𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto𝑦𝑥 = (seq1((+g𝑤), (𝑓𝑔))‘(♯‘𝑦)))))))
1211reldmmpo 7523 . . . 4 Rel dom Σg
1312ovprc1 7426 . . 3 𝐺 ∈ V → (𝐺 Σg ∅) = ∅)
14 fvprc 6850 . . . 4 𝐺 ∈ V → (0g𝐺) = ∅)
152, 14eqtrid 2776 . . 3 𝐺 ∈ V → 0 = ∅)
1613, 15eqtr4d 2767 . 2 𝐺 ∈ V → (𝐺 Σg ∅) = 0 )
1710, 16pm2.61i 182 1 (𝐺 Σg ∅) = 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  [wsbc 3753  csb 3862  cdif 3911  wss 3914  c0 4296  ifcif 4488  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  ccom 5642  cio 6462  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  1c1 11069  cuz 12793  ...cfz 13468  seqcseq 13966  chash 14295  Basecbs 17179  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seq 13967  df-gsum 17405
This theorem is referenced by:  gsumwsubmcl  18764  gsumccat  18768  gsumwmhm  18772  gsumwspan  18773  frmdgsum  18789  frmdup1  18791  mulgnn0gsum  19012  gsumwrev  19298  gsmsymgrfix  19358  gsmsymgreq  19362  psgnunilem2  19425  psgn0fv0  19441  psgnsn  19450  psgnprfval1  19452  gsumconst  19864  gsumfsum  21351  mplmonmul  21943  mplcoe1  21944  mplcoe5  21947  coe1fzgsumd  22191  evl1gsumd  22244  mdet0pr  22479  madugsum  22530  tmdgsum  23982  xrge0gsumle  24722  xrge0tsms  24723  jensen  26899  xrge0tsmsd  33002  gsumwun  33005  gsumle  33038  cyc3genpmlem  33108  gsumvsca1  33179  gsumvsca2  33180  elrgspnlem2  33194  elrgspnlem4  33196  domnprodn0  33226  unitprodclb  33360  rprmdvdsprod  33505  1arithidom  33508  1arithufdlem3  33517  1arithufdlem4  33518  dfufd2lem  33520  zarcmplem  33871  esumnul  34038  esumsnf  34054  sitg0  34337  mrsub0  35503  matunitlindflem1  37610  evl1gprodd  42105  idomnnzgmulnz  42121  deg1gprod  42128  lincval0  48404
  Copyright terms: Public domain W3C validator