Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsum0 | Structured version Visualization version GIF version |
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsum0.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
gsum0 | ⊢ (𝐺 Σg ∅) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | gsum0.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2736 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2736 | . . 3 ⊢ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
5 | id 22 | . . 3 ⊢ (𝐺 ∈ V → 𝐺 ∈ V) | |
6 | 0ex 5240 | . . . 4 ⊢ ∅ ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ∅ ∈ V) |
8 | f0 6685 | . . . 4 ⊢ ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
10 | 1, 2, 3, 4, 5, 7, 9 | gsumval1 18416 | . 2 ⊢ (𝐺 ∈ V → (𝐺 Σg ∅) = 0 ) |
11 | df-gsum 17202 | . . . . 5 ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) | |
12 | 11 | reldmmpo 7440 | . . . 4 ⊢ Rel dom Σg |
13 | 12 | ovprc1 7346 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐺 Σg ∅) = ∅) |
14 | fvprc 6796 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (0g‘𝐺) = ∅) | |
15 | 2, 14 | eqtrid 2788 | . . 3 ⊢ (¬ 𝐺 ∈ V → 0 = ∅) |
16 | 13, 15 | eqtr4d 2779 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐺 Σg ∅) = 0 ) |
17 | 10, 16 | pm2.61i 182 | 1 ⊢ (𝐺 Σg ∅) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ∀wral 3062 ∃wrex 3071 {crab 3303 Vcvv 3437 [wsbc 3721 ⦋csb 3837 ∖ cdif 3889 ⊆ wss 3892 ∅c0 4262 ifcif 4465 ◡ccnv 5599 dom cdm 5600 ran crn 5601 “ cima 5603 ∘ ccom 5604 ℩cio 6408 ⟶wf 6454 –1-1-onto→wf1o 6457 ‘cfv 6458 (class class class)co 7307 1c1 10922 ℤ≥cuz 12632 ...cfz 13289 seqcseq 13771 ♯chash 14094 Basecbs 16961 +gcplusg 17011 0gc0g 17199 Σg cgsu 17200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-seq 13772 df-gsum 17202 |
This theorem is referenced by: gsumwsubmcl 18524 gsumccatOLD 18528 gsumccat 18529 gsumwmhm 18533 gsumwspan 18534 frmdgsum 18550 frmdup1 18552 mulgnn0gsum 18759 gsumwrev 19022 gsmsymgrfix 19085 gsmsymgreq 19089 psgnunilem2 19152 psgn0fv0 19168 psgnsn 19177 psgnprfval1 19179 gsumconst 19584 gsumfsum 20714 mplmonmul 21286 mplcoe1 21287 mplcoe5 21290 coe1fzgsumd 21522 evl1gsumd 21572 mdet0pr 21790 madugsum 21841 tmdgsum 23295 xrge0gsumle 24045 xrge0tsms 24046 jensen 26187 xrge0tsmsd 31366 gsumle 31399 cyc3genpmlem 31467 gsumvsca1 31528 gsumvsca2 31529 zarcmplem 31880 esumnul 32065 esumsnf 32081 sitg0 32362 mrsub0 33527 matunitlindflem1 35821 lincval0 46000 |
Copyright terms: Public domain | W3C validator |