| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsum0 | Structured version Visualization version GIF version | ||
| Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsum0.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| gsum0 | ⊢ (𝐺 Σg ∅) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | gsum0.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | eqid 2729 | . . 3 ⊢ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
| 5 | id 22 | . . 3 ⊢ (𝐺 ∈ V → 𝐺 ∈ V) | |
| 6 | 0ex 5249 | . . . 4 ⊢ ∅ ∈ V | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ∅ ∈ V) |
| 8 | f0 6709 | . . . 4 ⊢ ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
| 10 | 1, 2, 3, 4, 5, 7, 9 | gsumval1 18576 | . 2 ⊢ (𝐺 ∈ V → (𝐺 Σg ∅) = 0 ) |
| 11 | df-gsum 17365 | . . . . 5 ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) | |
| 12 | 11 | reldmmpo 7487 | . . . 4 ⊢ Rel dom Σg |
| 13 | 12 | ovprc1 7392 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐺 Σg ∅) = ∅) |
| 14 | fvprc 6818 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (0g‘𝐺) = ∅) | |
| 15 | 2, 14 | eqtrid 2776 | . . 3 ⊢ (¬ 𝐺 ∈ V → 0 = ∅) |
| 16 | 13, 15 | eqtr4d 2767 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐺 Σg ∅) = 0 ) |
| 17 | 10, 16 | pm2.61i 182 | 1 ⊢ (𝐺 Σg ∅) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3396 Vcvv 3438 [wsbc 3744 ⦋csb 3853 ∖ cdif 3902 ⊆ wss 3905 ∅c0 4286 ifcif 4478 ◡ccnv 5622 dom cdm 5623 ran crn 5624 “ cima 5626 ∘ ccom 5627 ℩cio 6440 ⟶wf 6482 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 1c1 11029 ℤ≥cuz 12754 ...cfz 13429 seqcseq 13927 ♯chash 14256 Basecbs 17139 +gcplusg 17180 0gc0g 17362 Σg cgsu 17363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-seq 13928 df-gsum 17365 |
| This theorem is referenced by: gsumwsubmcl 18730 gsumccat 18734 gsumwmhm 18738 gsumwspan 18739 frmdgsum 18755 frmdup1 18757 mulgnn0gsum 18978 gsumwrev 19264 gsmsymgrfix 19326 gsmsymgreq 19330 psgnunilem2 19393 psgn0fv0 19409 psgnsn 19418 psgnprfval1 19420 gsumconst 19832 gsumle 20043 gsumfsum 21360 mplmonmul 21960 mplcoe1 21961 mplcoe5 21964 coe1fzgsumd 22208 evl1gsumd 22261 mdet0pr 22496 madugsum 22547 tmdgsum 23999 xrge0gsumle 24739 xrge0tsms 24740 jensen 26916 xrge0tsmsd 33034 gsumwun 33037 cyc3genpmlem 33112 gsumvsca1 33187 gsumvsca2 33188 elrgspnlem2 33202 elrgspnlem4 33204 domnprodn0 33234 unitprodclb 33345 rprmdvdsprod 33490 1arithidom 33493 1arithufdlem3 33502 1arithufdlem4 33503 dfufd2lem 33505 zarcmplem 33867 esumnul 34034 esumsnf 34050 sitg0 34333 mrsub0 35508 matunitlindflem1 37615 evl1gprodd 42110 idomnnzgmulnz 42126 deg1gprod 42133 lincval0 48420 |
| Copyright terms: Public domain | W3C validator |