| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsum0 | Structured version Visualization version GIF version | ||
| Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsum0.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| gsum0 | ⊢ (𝐺 Σg ∅) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | gsum0.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2730 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | eqid 2730 | . . 3 ⊢ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
| 5 | id 22 | . . 3 ⊢ (𝐺 ∈ V → 𝐺 ∈ V) | |
| 6 | 0ex 5265 | . . . 4 ⊢ ∅ ∈ V | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ∅ ∈ V) |
| 8 | f0 6744 | . . . 4 ⊢ ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
| 10 | 1, 2, 3, 4, 5, 7, 9 | gsumval1 18617 | . 2 ⊢ (𝐺 ∈ V → (𝐺 Σg ∅) = 0 ) |
| 11 | df-gsum 17412 | . . . . 5 ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) | |
| 12 | 11 | reldmmpo 7526 | . . . 4 ⊢ Rel dom Σg |
| 13 | 12 | ovprc1 7429 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐺 Σg ∅) = ∅) |
| 14 | fvprc 6853 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (0g‘𝐺) = ∅) | |
| 15 | 2, 14 | eqtrid 2777 | . . 3 ⊢ (¬ 𝐺 ∈ V → 0 = ∅) |
| 16 | 13, 15 | eqtr4d 2768 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐺 Σg ∅) = 0 ) |
| 17 | 10, 16 | pm2.61i 182 | 1 ⊢ (𝐺 Σg ∅) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {crab 3408 Vcvv 3450 [wsbc 3756 ⦋csb 3865 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 ifcif 4491 ◡ccnv 5640 dom cdm 5641 ran crn 5642 “ cima 5644 ∘ ccom 5645 ℩cio 6465 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 1c1 11076 ℤ≥cuz 12800 ...cfz 13475 seqcseq 13973 ♯chash 14302 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Σg cgsu 17410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-seq 13974 df-gsum 17412 |
| This theorem is referenced by: gsumwsubmcl 18771 gsumccat 18775 gsumwmhm 18779 gsumwspan 18780 frmdgsum 18796 frmdup1 18798 mulgnn0gsum 19019 gsumwrev 19305 gsmsymgrfix 19365 gsmsymgreq 19369 psgnunilem2 19432 psgn0fv0 19448 psgnsn 19457 psgnprfval1 19459 gsumconst 19871 gsumfsum 21358 mplmonmul 21950 mplcoe1 21951 mplcoe5 21954 coe1fzgsumd 22198 evl1gsumd 22251 mdet0pr 22486 madugsum 22537 tmdgsum 23989 xrge0gsumle 24729 xrge0tsms 24730 jensen 26906 xrge0tsmsd 33009 gsumwun 33012 gsumle 33045 cyc3genpmlem 33115 gsumvsca1 33186 gsumvsca2 33187 elrgspnlem2 33201 elrgspnlem4 33203 domnprodn0 33233 unitprodclb 33367 rprmdvdsprod 33512 1arithidom 33515 1arithufdlem3 33524 1arithufdlem4 33525 dfufd2lem 33527 zarcmplem 33878 esumnul 34045 esumsnf 34061 sitg0 34344 mrsub0 35510 matunitlindflem1 37617 evl1gprodd 42112 idomnnzgmulnz 42128 deg1gprod 42135 lincval0 48408 |
| Copyright terms: Public domain | W3C validator |