Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsum0 | Structured version Visualization version GIF version |
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsum0.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
gsum0 | ⊢ (𝐺 Σg ∅) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | gsum0.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2737 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2737 | . . 3 ⊢ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
5 | id 22 | . . 3 ⊢ (𝐺 ∈ V → 𝐺 ∈ V) | |
6 | 0ex 5256 | . . . 4 ⊢ ∅ ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ∅ ∈ V) |
8 | f0 6711 | . . . 4 ⊢ ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
10 | 1, 2, 3, 4, 5, 7, 9 | gsumval1 18465 | . 2 ⊢ (𝐺 ∈ V → (𝐺 Σg ∅) = 0 ) |
11 | df-gsum 17251 | . . . . 5 ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) | |
12 | 11 | reldmmpo 7475 | . . . 4 ⊢ Rel dom Σg |
13 | 12 | ovprc1 7381 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐺 Σg ∅) = ∅) |
14 | fvprc 6822 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (0g‘𝐺) = ∅) | |
15 | 2, 14 | eqtrid 2789 | . . 3 ⊢ (¬ 𝐺 ∈ V → 0 = ∅) |
16 | 13, 15 | eqtr4d 2780 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐺 Σg ∅) = 0 ) |
17 | 10, 16 | pm2.61i 182 | 1 ⊢ (𝐺 Σg ∅) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∀wral 3062 ∃wrex 3071 {crab 3404 Vcvv 3442 [wsbc 3731 ⦋csb 3847 ∖ cdif 3899 ⊆ wss 3902 ∅c0 4274 ifcif 4478 ◡ccnv 5624 dom cdm 5625 ran crn 5626 “ cima 5628 ∘ ccom 5629 ℩cio 6434 ⟶wf 6480 –1-1-onto→wf1o 6483 ‘cfv 6484 (class class class)co 7342 1c1 10978 ℤ≥cuz 12688 ...cfz 13345 seqcseq 13827 ♯chash 14150 Basecbs 17010 +gcplusg 17060 0gc0g 17248 Σg cgsu 17249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-seq 13828 df-gsum 17251 |
This theorem is referenced by: gsumwsubmcl 18573 gsumccat 18577 gsumwmhm 18581 gsumwspan 18582 frmdgsum 18598 frmdup1 18600 mulgnn0gsum 18807 gsumwrev 19070 gsmsymgrfix 19133 gsmsymgreq 19137 psgnunilem2 19200 psgn0fv0 19216 psgnsn 19225 psgnprfval1 19227 gsumconst 19630 gsumfsum 20771 mplmonmul 21343 mplcoe1 21344 mplcoe5 21347 coe1fzgsumd 21579 evl1gsumd 21629 mdet0pr 21847 madugsum 21898 tmdgsum 23352 xrge0gsumle 24102 xrge0tsms 24103 jensen 26244 xrge0tsmsd 31602 gsumle 31635 cyc3genpmlem 31703 gsumvsca1 31764 gsumvsca2 31765 zarcmplem 32127 esumnul 32312 esumsnf 32328 sitg0 32611 mrsub0 33775 matunitlindflem1 35927 lincval0 46172 |
Copyright terms: Public domain | W3C validator |