| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsum0 | Structured version Visualization version GIF version | ||
| Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsum0.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| gsum0 | ⊢ (𝐺 Σg ∅) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | gsum0.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2733 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | eqid 2733 | . . 3 ⊢ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
| 5 | id 22 | . . 3 ⊢ (𝐺 ∈ V → 𝐺 ∈ V) | |
| 6 | 0ex 5249 | . . . 4 ⊢ ∅ ∈ V | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ∅ ∈ V) |
| 8 | f0 6712 | . . . 4 ⊢ ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
| 10 | 1, 2, 3, 4, 5, 7, 9 | gsumval1 18599 | . 2 ⊢ (𝐺 ∈ V → (𝐺 Σg ∅) = 0 ) |
| 11 | df-gsum 17353 | . . . . 5 ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) | |
| 12 | 11 | reldmmpo 7489 | . . . 4 ⊢ Rel dom Σg |
| 13 | 12 | ovprc1 7394 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐺 Σg ∅) = ∅) |
| 14 | fvprc 6823 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (0g‘𝐺) = ∅) | |
| 15 | 2, 14 | eqtrid 2780 | . . 3 ⊢ (¬ 𝐺 ∈ V → 0 = ∅) |
| 16 | 13, 15 | eqtr4d 2771 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐺 Σg ∅) = 0 ) |
| 17 | 10, 16 | pm2.61i 182 | 1 ⊢ (𝐺 Σg ∅) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 {crab 3396 Vcvv 3437 [wsbc 3737 ⦋csb 3846 ∖ cdif 3895 ⊆ wss 3898 ∅c0 4282 ifcif 4476 ◡ccnv 5620 dom cdm 5621 ran crn 5622 “ cima 5624 ∘ ccom 5625 ℩cio 6443 ⟶wf 6485 –1-1-onto→wf1o 6488 ‘cfv 6489 (class class class)co 7355 1c1 11018 ℤ≥cuz 12742 ...cfz 13414 seqcseq 13915 ♯chash 14244 Basecbs 17127 +gcplusg 17168 0gc0g 17350 Σg cgsu 17351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-seq 13916 df-gsum 17353 |
| This theorem is referenced by: gsumwsubmcl 18753 gsumccat 18757 gsumwmhm 18761 gsumwspan 18762 frmdgsum 18778 frmdup1 18780 mulgnn0gsum 19001 gsumwrev 19286 gsmsymgrfix 19348 gsmsymgreq 19352 psgnunilem2 19415 psgn0fv0 19431 psgnsn 19440 psgnprfval1 19442 gsumconst 19854 gsumle 20065 gsumfsum 21380 mplmonmul 21982 mplcoe1 21983 mplcoe5 21986 coe1fzgsumd 22239 evl1gsumd 22292 mdet0pr 22527 madugsum 22578 tmdgsum 24030 xrge0gsumle 24769 xrge0tsms 24770 jensen 26946 xrge0tsmsd 33083 gsumwun 33086 cyc3genpmlem 33161 gsumvsca1 33236 gsumvsca2 33237 elrgspnlem2 33253 elrgspnlem4 33255 domnprodn0 33285 domnprodeq0 33286 unitprodclb 33398 rprmdvdsprod 33543 1arithidom 33546 1arithufdlem3 33555 1arithufdlem4 33556 dfufd2lem 33558 deg1prod 33592 ply1coedeg 33598 vieta 33664 zarcmplem 33966 esumnul 34133 esumsnf 34149 sitg0 34431 mrsub0 35632 matunitlindflem1 37729 evl1gprodd 42283 idomnnzgmulnz 42299 deg1gprod 42306 lincval0 48577 |
| Copyright terms: Public domain | W3C validator |