![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsum0 | Structured version Visualization version GIF version |
Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsum0.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
gsum0 | ⊢ (𝐺 Σg ∅) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | gsum0.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2734 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2734 | . . 3 ⊢ {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} = {𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
5 | id 22 | . . 3 ⊢ (𝐺 ∈ V → 𝐺 ∈ V) | |
6 | 0ex 5312 | . . . 4 ⊢ ∅ ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ∅ ∈ V) |
8 | f0 6789 | . . . 4 ⊢ ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)} | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝐺 ∈ V → ∅:∅⟶{𝑥 ∈ (Base‘𝐺) ∣ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)}) |
10 | 1, 2, 3, 4, 5, 7, 9 | gsumval1 18708 | . 2 ⊢ (𝐺 ∈ V → (𝐺 Σg ∅) = 0 ) |
11 | df-gsum 17488 | . . . . 5 ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) | |
12 | 11 | reldmmpo 7566 | . . . 4 ⊢ Rel dom Σg |
13 | 12 | ovprc1 7469 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐺 Σg ∅) = ∅) |
14 | fvprc 6898 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (0g‘𝐺) = ∅) | |
15 | 2, 14 | eqtrid 2786 | . . 3 ⊢ (¬ 𝐺 ∈ V → 0 = ∅) |
16 | 13, 15 | eqtr4d 2777 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝐺 Σg ∅) = 0 ) |
17 | 10, 16 | pm2.61i 182 | 1 ⊢ (𝐺 Σg ∅) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1536 ∃wex 1775 ∈ wcel 2105 ∀wral 3058 ∃wrex 3067 {crab 3432 Vcvv 3477 [wsbc 3790 ⦋csb 3907 ∖ cdif 3959 ⊆ wss 3962 ∅c0 4338 ifcif 4530 ◡ccnv 5687 dom cdm 5688 ran crn 5689 “ cima 5691 ∘ ccom 5692 ℩cio 6513 ⟶wf 6558 –1-1-onto→wf1o 6561 ‘cfv 6562 (class class class)co 7430 1c1 11153 ℤ≥cuz 12875 ...cfz 13543 seqcseq 14038 ♯chash 14365 Basecbs 17244 +gcplusg 17297 0gc0g 17485 Σg cgsu 17486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-seq 14039 df-gsum 17488 |
This theorem is referenced by: gsumwsubmcl 18862 gsumccat 18866 gsumwmhm 18870 gsumwspan 18871 frmdgsum 18887 frmdup1 18889 mulgnn0gsum 19110 gsumwrev 19399 gsmsymgrfix 19460 gsmsymgreq 19464 psgnunilem2 19527 psgn0fv0 19543 psgnsn 19552 psgnprfval1 19554 gsumconst 19966 gsumfsum 21469 mplmonmul 22071 mplcoe1 22072 mplcoe5 22075 coe1fzgsumd 22323 evl1gsumd 22376 mdet0pr 22613 madugsum 22664 tmdgsum 24118 xrge0gsumle 24868 xrge0tsms 24869 jensen 27046 xrge0tsmsd 33047 gsumwun 33050 gsumle 33083 cyc3genpmlem 33153 gsumvsca1 33214 gsumvsca2 33215 elrgspnlem2 33232 elrgspnlem4 33234 domnprodn0 33261 unitprodclb 33396 rprmdvdsprod 33541 1arithidom 33544 1arithufdlem3 33553 1arithufdlem4 33554 dfufd2lem 33556 zarcmplem 33841 esumnul 34028 esumsnf 34044 sitg0 34327 mrsub0 35500 matunitlindflem1 37602 evl1gprodd 42098 idomnnzgmulnz 42114 deg1gprod 42121 lincval0 48260 |
Copyright terms: Public domain | W3C validator |