Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumnunsn Structured version   Visualization version   GIF version

Theorem gsumnunsn 31806
Description: Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
gsumncl.k 𝐾 = (Base‘𝑀)
gsumncl.w (𝜑𝑀 ∈ Mnd)
gsumncl.p (𝜑𝑃 ∈ (ℤ𝑁))
gsumncl.b ((𝜑𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
gsumnunsn.a + = (+g𝑀)
gsumnunsn.l (𝜑𝐶𝐾)
gsumnunsn.c ((𝜑𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶)
Assertion
Ref Expression
gsumnunsn (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶))
Distinct variable groups:   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝜑,𝑘   𝐶,𝑘
Allowed substitution hints:   𝐵(𝑘)   + (𝑘)   𝑀(𝑘)

Proof of Theorem gsumnunsn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 gsumncl.p . . 3 (𝜑𝑃 ∈ (ℤ𝑁))
2 seqp1 13378 . . 3 (𝑃 ∈ (ℤ𝑁) → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1)) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1))))
31, 2syl 17 . 2 (𝜑 → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1)) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1))))
4 gsumncl.k . . 3 𝐾 = (Base‘𝑀)
5 gsumnunsn.a . . 3 + = (+g𝑀)
6 gsumncl.w . . 3 (𝜑𝑀 ∈ Mnd)
7 peano2uz 12295 . . . 4 (𝑃 ∈ (ℤ𝑁) → (𝑃 + 1) ∈ (ℤ𝑁))
81, 7syl 17 . . 3 (𝜑 → (𝑃 + 1) ∈ (ℤ𝑁))
9 gsumncl.b . . . . . 6 ((𝜑𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
109adantlr 713 . . . . 5 (((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
11 gsumnunsn.c . . . . . . 7 ((𝜑𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶)
1211adantlr 713 . . . . . 6 (((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶)
13 gsumnunsn.l . . . . . . 7 (𝜑𝐶𝐾)
1413ad2antrr 724 . . . . . 6 (((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐶𝐾)
1512, 14eqeltrd 2913 . . . . 5 (((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐵𝐾)
16 elfzp1 12951 . . . . . . 7 (𝑃 ∈ (ℤ𝑁) → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↔ (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1))))
171, 16syl 17 . . . . . 6 (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↔ (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1))))
1817biimpa 479 . . . . 5 ((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) → (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1)))
1910, 15, 18mpjaodan 955 . . . 4 ((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) → 𝐵𝐾)
2019fmpttd 6874 . . 3 (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵):(𝑁...(𝑃 + 1))⟶𝐾)
214, 5, 6, 8, 20gsumval2 17890 . 2 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1)))
229fmpttd 6874 . . . . 5 (𝜑 → (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵):(𝑁...𝑃)⟶𝐾)
234, 5, 6, 1, 22gsumval2 17890 . . . 4 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃))
24 fzssp1 12944 . . . . . . . 8 (𝑁...𝑃) ⊆ (𝑁...(𝑃 + 1))
25 resmpt 5900 . . . . . . . 8 ((𝑁...𝑃) ⊆ (𝑁...(𝑃 + 1)) → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃)) = (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))
2624, 25ax-mp 5 . . . . . . 7 ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃)) = (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)
2726fveq1i 6666 . . . . . 6 (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑖)
28 fvres 6684 . . . . . . 7 (𝑖 ∈ (𝑁...𝑃) → (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖))
2928adantl 484 . . . . . 6 ((𝜑𝑖 ∈ (𝑁...𝑃)) → (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖))
3027, 29syl5reqr 2871 . . . . 5 ((𝜑𝑖 ∈ (𝑁...𝑃)) → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖) = ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑖))
311, 30seqfveq 13388 . . . 4 (𝜑 → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) = (seq𝑁( + , (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃))
3223, 31eqtr4d 2859 . . 3 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃))
33 eqidd 2822 . . . . 5 (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) = (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))
34 eluzfz2 12909 . . . . . 6 ((𝑃 + 1) ∈ (ℤ𝑁) → (𝑃 + 1) ∈ (𝑁...(𝑃 + 1)))
358, 34syl 17 . . . . 5 (𝜑 → (𝑃 + 1) ∈ (𝑁...(𝑃 + 1)))
3633, 11, 35, 13fvmptd 6770 . . . 4 (𝜑 → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1)) = 𝐶)
3736eqcomd 2827 . . 3 (𝜑𝐶 = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1)))
3832, 37oveq12d 7168 . 2 (𝜑 → ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1))))
393, 21, 383eqtr4d 2866 1 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wss 3936  cmpt 5139  cres 5552  cfv 6350  (class class class)co 7150  1c1 10532   + caddc 10534  cuz 12237  ...cfz 12886  seqcseq 13363  Basecbs 16477  +gcplusg 16559   Σg cgsu 16708  Mndcmnd 17905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-seq 13364  df-0g 16709  df-gsum 16710
This theorem is referenced by:  signstfvn  31834
  Copyright terms: Public domain W3C validator