Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumnunsn Structured version   Visualization version   GIF version

Theorem gsumnunsn 33210
Description: Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
gsumncl.k 𝐾 = (Base‘𝑀)
gsumncl.w (𝜑𝑀 ∈ Mnd)
gsumncl.p (𝜑𝑃 ∈ (ℤ𝑁))
gsumncl.b ((𝜑𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
gsumnunsn.a + = (+g𝑀)
gsumnunsn.l (𝜑𝐶𝐾)
gsumnunsn.c ((𝜑𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶)
Assertion
Ref Expression
gsumnunsn (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶))
Distinct variable groups:   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝜑,𝑘   𝐶,𝑘
Allowed substitution hints:   𝐵(𝑘)   + (𝑘)   𝑀(𝑘)

Proof of Theorem gsumnunsn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 gsumncl.p . . 3 (𝜑𝑃 ∈ (ℤ𝑁))
2 seqp1 13927 . . 3 (𝑃 ∈ (ℤ𝑁) → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1)) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1))))
31, 2syl 17 . 2 (𝜑 → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1)) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1))))
4 gsumncl.k . . 3 𝐾 = (Base‘𝑀)
5 gsumnunsn.a . . 3 + = (+g𝑀)
6 gsumncl.w . . 3 (𝜑𝑀 ∈ Mnd)
7 peano2uz 12831 . . . 4 (𝑃 ∈ (ℤ𝑁) → (𝑃 + 1) ∈ (ℤ𝑁))
81, 7syl 17 . . 3 (𝜑 → (𝑃 + 1) ∈ (ℤ𝑁))
9 gsumncl.b . . . . . 6 ((𝜑𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
109adantlr 714 . . . . 5 (((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵𝐾)
11 gsumnunsn.c . . . . . . 7 ((𝜑𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶)
1211adantlr 714 . . . . . 6 (((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶)
13 gsumnunsn.l . . . . . . 7 (𝜑𝐶𝐾)
1413ad2antrr 725 . . . . . 6 (((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐶𝐾)
1512, 14eqeltrd 2834 . . . . 5 (((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐵𝐾)
16 elfzp1 13497 . . . . . . 7 (𝑃 ∈ (ℤ𝑁) → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↔ (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1))))
171, 16syl 17 . . . . . 6 (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↔ (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1))))
1817biimpa 478 . . . . 5 ((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) → (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1)))
1910, 15, 18mpjaodan 958 . . . 4 ((𝜑𝑘 ∈ (𝑁...(𝑃 + 1))) → 𝐵𝐾)
2019fmpttd 7064 . . 3 (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵):(𝑁...(𝑃 + 1))⟶𝐾)
214, 5, 6, 8, 20gsumval2 18546 . 2 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1)))
229fmpttd 7064 . . . . 5 (𝜑 → (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵):(𝑁...𝑃)⟶𝐾)
234, 5, 6, 1, 22gsumval2 18546 . . . 4 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃))
24 fvres 6862 . . . . . . 7 (𝑖 ∈ (𝑁...𝑃) → (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖))
2524adantl 483 . . . . . 6 ((𝜑𝑖 ∈ (𝑁...𝑃)) → (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖))
26 fzssp1 13490 . . . . . . . 8 (𝑁...𝑃) ⊆ (𝑁...(𝑃 + 1))
27 resmpt 5992 . . . . . . . 8 ((𝑁...𝑃) ⊆ (𝑁...(𝑃 + 1)) → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃)) = (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))
2826, 27ax-mp 5 . . . . . . 7 ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃)) = (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)
2928fveq1i 6844 . . . . . 6 (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑖)
3025, 29eqtr3di 2788 . . . . 5 ((𝜑𝑖 ∈ (𝑁...𝑃)) → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖) = ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑖))
311, 30seqfveq 13938 . . . 4 (𝜑 → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) = (seq𝑁( + , (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃))
3223, 31eqtr4d 2776 . . 3 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃))
33 eqidd 2734 . . . . 5 (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) = (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))
34 eluzfz2 13455 . . . . . 6 ((𝑃 + 1) ∈ (ℤ𝑁) → (𝑃 + 1) ∈ (𝑁...(𝑃 + 1)))
358, 34syl 17 . . . . 5 (𝜑 → (𝑃 + 1) ∈ (𝑁...(𝑃 + 1)))
3633, 11, 35, 13fvmptd 6956 . . . 4 (𝜑 → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1)) = 𝐶)
3736eqcomd 2739 . . 3 (𝜑𝐶 = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1)))
3832, 37oveq12d 7376 . 2 (𝜑 → ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1))))
393, 21, 383eqtr4d 2783 1 (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wss 3911  cmpt 5189  cres 5636  cfv 6497  (class class class)co 7358  1c1 11057   + caddc 11059  cuz 12768  ...cfz 13430  seqcseq 13912  Basecbs 17088  +gcplusg 17138   Σg cgsu 17327  Mndcmnd 18561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-seq 13913  df-0g 17328  df-gsum 17329
This theorem is referenced by:  signstfvn  33238
  Copyright terms: Public domain W3C validator