Step | Hyp | Ref
| Expression |
1 | | gsumncl.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘𝑁)) |
2 | | seqp1 13589 |
. . 3
⊢ (𝑃 ∈
(ℤ≥‘𝑁) → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1)) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1)))) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1)) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1)))) |
4 | | gsumncl.k |
. . 3
⊢ 𝐾 = (Base‘𝑀) |
5 | | gsumnunsn.a |
. . 3
⊢ + =
(+g‘𝑀) |
6 | | gsumncl.w |
. . 3
⊢ (𝜑 → 𝑀 ∈ Mnd) |
7 | | peano2uz 12497 |
. . . 4
⊢ (𝑃 ∈
(ℤ≥‘𝑁) → (𝑃 + 1) ∈
(ℤ≥‘𝑁)) |
8 | 1, 7 | syl 17 |
. . 3
⊢ (𝜑 → (𝑃 + 1) ∈
(ℤ≥‘𝑁)) |
9 | | gsumncl.b |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵 ∈ 𝐾) |
10 | 9 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 ∈ (𝑁...𝑃)) → 𝐵 ∈ 𝐾) |
11 | | gsumnunsn.c |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶) |
12 | 11 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐵 = 𝐶) |
13 | | gsumnunsn.l |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝐾) |
14 | 13 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐶 ∈ 𝐾) |
15 | 12, 14 | eqeltrd 2838 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑃 + 1))) ∧ 𝑘 = (𝑃 + 1)) → 𝐵 ∈ 𝐾) |
16 | | elfzp1 13162 |
. . . . . . 7
⊢ (𝑃 ∈
(ℤ≥‘𝑁) → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↔ (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1)))) |
17 | 1, 16 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↔ (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1)))) |
18 | 17 | biimpa 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑃 + 1))) → (𝑘 ∈ (𝑁...𝑃) ∨ 𝑘 = (𝑃 + 1))) |
19 | 10, 15, 18 | mpjaodan 959 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁...(𝑃 + 1))) → 𝐵 ∈ 𝐾) |
20 | 19 | fmpttd 6932 |
. . 3
⊢ (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵):(𝑁...(𝑃 + 1))⟶𝐾) |
21 | 4, 5, 6, 8, 20 | gsumval2 18158 |
. 2
⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘(𝑃 + 1))) |
22 | 9 | fmpttd 6932 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵):(𝑁...𝑃)⟶𝐾) |
23 | 4, 5, 6, 1, 22 | gsumval2 18158 |
. . . 4
⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃)) |
24 | | fvres 6736 |
. . . . . . 7
⊢ (𝑖 ∈ (𝑁...𝑃) → (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖)) |
25 | 24 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁...𝑃)) → (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖)) |
26 | | fzssp1 13155 |
. . . . . . . 8
⊢ (𝑁...𝑃) ⊆ (𝑁...(𝑃 + 1)) |
27 | | resmpt 5905 |
. . . . . . . 8
⊢ ((𝑁...𝑃) ⊆ (𝑁...(𝑃 + 1)) → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃)) = (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) |
28 | 26, 27 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃)) = (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵) |
29 | 28 | fveq1i 6718 |
. . . . . 6
⊢ (((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) ↾ (𝑁...𝑃))‘𝑖) = ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑖) |
30 | 25, 29 | eqtr3di 2793 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑁...𝑃)) → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘𝑖) = ((𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)‘𝑖)) |
31 | 1, 30 | seqfveq 13600 |
. . . 4
⊢ (𝜑 → (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) = (seq𝑁( + , (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵))‘𝑃)) |
32 | 23, 31 | eqtr4d 2780 |
. . 3
⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) = (seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃)) |
33 | | eqidd 2738 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵) = (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) |
34 | | eluzfz2 13120 |
. . . . . 6
⊢ ((𝑃 + 1) ∈
(ℤ≥‘𝑁) → (𝑃 + 1) ∈ (𝑁...(𝑃 + 1))) |
35 | 8, 34 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑃 + 1) ∈ (𝑁...(𝑃 + 1))) |
36 | 33, 11, 35, 13 | fvmptd 6825 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1)) = 𝐶) |
37 | 36 | eqcomd 2743 |
. . 3
⊢ (𝜑 → 𝐶 = ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1))) |
38 | 32, 37 | oveq12d 7231 |
. 2
⊢ (𝜑 → ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶) = ((seq𝑁( + , (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵))‘𝑃) + ((𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)‘(𝑃 + 1)))) |
39 | 3, 21, 38 | 3eqtr4d 2787 |
1
⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁...(𝑃 + 1)) ↦ 𝐵)) = ((𝑀 Σg (𝑘 ∈ (𝑁...𝑃) ↦ 𝐵)) + 𝐶)) |