MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval2 Structured version   Visualization version   GIF version

Theorem gsumval2 18112
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b 𝐵 = (Base‘𝐺)
gsumval2.p + = (+g𝐺)
gsumval2.g (𝜑𝐺𝑉)
gsumval2.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumval2.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumval2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))

Proof of Theorem gsumval2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2736 . . . 4 (0g𝐺) = (0g𝐺)
3 gsumval2.p . . . 4 + = (+g𝐺)
4 eqid 2736 . . . 4 {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
5 gsumval2.g . . . . 5 (𝜑𝐺𝑉)
65adantr 484 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐺𝑉)
7 ovexd 7226 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝑀...𝑁) ∈ V)
8 gsumval2.f . . . . . . 7 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
98ffnd 6524 . . . . . 6 (𝜑𝐹 Fn (𝑀...𝑁))
109adantr 484 . . . . 5 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹 Fn (𝑀...𝑁))
11 simpr 488 . . . . 5 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
12 df-f 6362 . . . . 5 (𝐹:(𝑀...𝑁)⟶{𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ↔ (𝐹 Fn (𝑀...𝑁) ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}))
1310, 11, 12sylanbrc 586 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹:(𝑀...𝑁)⟶{𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
141, 2, 3, 4, 6, 7, 13gsumval1 18109 . . 3 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (0g𝐺))
15 simpl 486 . . . . . . . . 9 (((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → (𝑥 + 𝑦) = 𝑦)
1615ralimi 3073 . . . . . . . 8 (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦)
1716a1i 11 . . . . . . 7 (𝑥𝐵 → (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦))
1817ss2rabi 3976 . . . . . 6 {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦}
19 fvex 6708 . . . . . . . 8 (0g𝐺) ∈ V
2019snid 4563 . . . . . . 7 (0g𝐺) ∈ {(0g𝐺)}
218fdmd 6534 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = (𝑀...𝑁))
22 gsumval2.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ𝑀))
23 eluzfz1 13084 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
24 ne0i 4235 . . . . . . . . . . . . . 14 (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) ≠ ∅)
2522, 23, 243syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝑀...𝑁) ≠ ∅)
2621, 25eqnetrd 2999 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 ≠ ∅)
27 dm0rn0 5779 . . . . . . . . . . . . 13 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
2827necon3bii 2984 . . . . . . . . . . . 12 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
2926, 28sylib 221 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ≠ ∅)
3029adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ran 𝐹 ≠ ∅)
31 ssn0 4301 . . . . . . . . . 10 ((ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ∧ ran 𝐹 ≠ ∅) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ≠ ∅)
3211, 30, 31syl2anc 587 . . . . . . . . 9 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ≠ ∅)
3332neneqd 2937 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ¬ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅)
341, 2, 3, 4mgmidsssn0 18098 . . . . . . . . . . 11 (𝐺𝑉 → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)})
355, 34syl 17 . . . . . . . . . 10 (𝜑 → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)})
36 sssn 4725 . . . . . . . . . 10 ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)} ↔ ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅ ∨ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)}))
3735, 36sylib 221 . . . . . . . . 9 (𝜑 → ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅ ∨ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)}))
3837orcanai 1003 . . . . . . . 8 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)})
3933, 38syldan 594 . . . . . . 7 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)})
4020, 39eleqtrrid 2838 . . . . . 6 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
4118, 40sseldi 3885 . . . . 5 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦})
42 oveq1 7198 . . . . . . . . 9 (𝑥 = (0g𝐺) → (𝑥 + 𝑦) = ((0g𝐺) + 𝑦))
4342eqeq1d 2738 . . . . . . . 8 (𝑥 = (0g𝐺) → ((𝑥 + 𝑦) = 𝑦 ↔ ((0g𝐺) + 𝑦) = 𝑦))
4443ralbidv 3108 . . . . . . 7 (𝑥 = (0g𝐺) → (∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦 ↔ ∀𝑦𝐵 ((0g𝐺) + 𝑦) = 𝑦))
4544elrab 3591 . . . . . 6 ((0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦} ↔ ((0g𝐺) ∈ 𝐵 ∧ ∀𝑦𝐵 ((0g𝐺) + 𝑦) = 𝑦))
46 oveq2 7199 . . . . . . . 8 (𝑦 = (0g𝐺) → ((0g𝐺) + 𝑦) = ((0g𝐺) + (0g𝐺)))
47 id 22 . . . . . . . 8 (𝑦 = (0g𝐺) → 𝑦 = (0g𝐺))
4846, 47eqeq12d 2752 . . . . . . 7 (𝑦 = (0g𝐺) → (((0g𝐺) + 𝑦) = 𝑦 ↔ ((0g𝐺) + (0g𝐺)) = (0g𝐺)))
4948rspcva 3525 . . . . . 6 (((0g𝐺) ∈ 𝐵 ∧ ∀𝑦𝐵 ((0g𝐺) + 𝑦) = 𝑦) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5045, 49sylbi 220 . . . . 5 ((0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦} → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5141, 50syl 17 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5222adantr 484 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝑁 ∈ (ℤ𝑀))
5335ad2antrr 726 . . . . . 6 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)})
5413ffvelrnda 6882 . . . . . 6 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹𝑧) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
5553, 54sseldd 3888 . . . . 5 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹𝑧) ∈ {(0g𝐺)})
56 elsni 4544 . . . . 5 ((𝐹𝑧) ∈ {(0g𝐺)} → (𝐹𝑧) = (0g𝐺))
5755, 56syl 17 . . . 4 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹𝑧) = (0g𝐺))
5851, 52, 57seqid3 13585 . . 3 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (seq𝑀( + , 𝐹)‘𝑁) = (0g𝐺))
5914, 58eqtr4d 2774 . 2 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
605adantr 484 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐺𝑉)
6122adantr 484 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝑁 ∈ (ℤ𝑀))
628adantr 484 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹:(𝑀...𝑁)⟶𝐵)
63 simpr 488 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
641, 3, 60, 61, 62, 4, 63gsumval2a 18111 . 2 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
6559, 64pm2.61dan 813 1 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847   = wceq 1543  wcel 2112  wne 2932  wral 3051  {crab 3055  Vcvv 3398  wss 3853  c0 4223  {csn 4527  dom cdm 5536  ran crn 5537   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  cuz 12403  ...cfz 13060  seqcseq 13539  Basecbs 16666  +gcplusg 16749  0gc0g 16898   Σg cgsu 16899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-seq 13540  df-0g 16900  df-gsum 16901
This theorem is referenced by:  gsumsplit1r  18113  gsumprval  18114  gsumwsubmcl  18217  gsumws1  18218  gsumsgrpccat  18220  gsumccatOLD  18221  gsumwmhm  18226  mulgnngsum  18451  gsumval3  19246  gsummptfzcl  19308  gsumncl  32185  gsumnunsn  32186
  Copyright terms: Public domain W3C validator