Step | Hyp | Ref
| Expression |
1 | | gsumval2.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
2 | | eqid 2738 |
. . . 4
⊢
(0g‘𝐺) = (0g‘𝐺) |
3 | | gsumval2.p |
. . . 4
⊢ + =
(+g‘𝐺) |
4 | | eqid 2738 |
. . . 4
⊢ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
5 | | gsumval2.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
6 | 5 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐺 ∈ 𝑉) |
7 | | ovexd 7310 |
. . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝑀...𝑁) ∈ V) |
8 | | gsumval2.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) |
9 | 8 | ffnd 6601 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn (𝑀...𝑁)) |
10 | 9 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹 Fn (𝑀...𝑁)) |
11 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) |
12 | | df-f 6437 |
. . . . 5
⊢ (𝐹:(𝑀...𝑁)⟶{𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ↔ (𝐹 Fn (𝑀...𝑁) ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})) |
13 | 10, 11, 12 | sylanbrc 583 |
. . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹:(𝑀...𝑁)⟶{𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) |
14 | 1, 2, 3, 4, 6, 7, 13 | gsumval1 18367 |
. . 3
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (0g‘𝐺)) |
15 | | simpl 483 |
. . . . . . . . 9
⊢ (((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → (𝑥 + 𝑦) = 𝑦) |
16 | 15 | ralimi 3087 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = 𝑦) |
17 | 16 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = 𝑦)) |
18 | 17 | ss2rabi 4010 |
. . . . . 6
⊢ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = 𝑦} |
19 | | fvex 6787 |
. . . . . . . 8
⊢
(0g‘𝐺) ∈ V |
20 | 19 | snid 4597 |
. . . . . . 7
⊢
(0g‘𝐺) ∈ {(0g‘𝐺)} |
21 | 8 | fdmd 6611 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom 𝐹 = (𝑀...𝑁)) |
22 | | gsumval2.n |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
23 | | eluzfz1 13263 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
24 | | ne0i 4268 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) ≠ ∅) |
25 | 22, 23, 24 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀...𝑁) ≠ ∅) |
26 | 21, 25 | eqnetrd 3011 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝐹 ≠ ∅) |
27 | | dm0rn0 5834 |
. . . . . . . . . . . . 13
⊢ (dom
𝐹 = ∅ ↔ ran
𝐹 =
∅) |
28 | 27 | necon3bii 2996 |
. . . . . . . . . . . 12
⊢ (dom
𝐹 ≠ ∅ ↔ ran
𝐹 ≠
∅) |
29 | 26, 28 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝐹 ≠ ∅) |
30 | 29 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ran 𝐹 ≠ ∅) |
31 | | ssn0 4334 |
. . . . . . . . . 10
⊢ ((ran
𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ∧ ran 𝐹 ≠ ∅) → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ≠ ∅) |
32 | 11, 30, 31 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ≠ ∅) |
33 | 32 | neneqd 2948 |
. . . . . . . 8
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ¬ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅) |
34 | 1, 2, 3, 4 | mgmidsssn0 18356 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g‘𝐺)}) |
35 | 5, 34 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g‘𝐺)}) |
36 | | sssn 4759 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g‘𝐺)} ↔ ({𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅ ∨ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g‘𝐺)})) |
37 | 35, 36 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → ({𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅ ∨ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g‘𝐺)})) |
38 | 37 | orcanai 1000 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅) → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g‘𝐺)}) |
39 | 33, 38 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g‘𝐺)}) |
40 | 20, 39 | eleqtrrid 2846 |
. . . . . 6
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (0g‘𝐺) ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) |
41 | 18, 40 | sselid 3919 |
. . . . 5
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (0g‘𝐺) ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = 𝑦}) |
42 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑥 = (0g‘𝐺) → (𝑥 + 𝑦) = ((0g‘𝐺) + 𝑦)) |
43 | 42 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑥 = (0g‘𝐺) → ((𝑥 + 𝑦) = 𝑦 ↔ ((0g‘𝐺) + 𝑦) = 𝑦)) |
44 | 43 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑥 = (0g‘𝐺) → (∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = 𝑦 ↔ ∀𝑦 ∈ 𝐵 ((0g‘𝐺) + 𝑦) = 𝑦)) |
45 | 44 | elrab 3624 |
. . . . . 6
⊢
((0g‘𝐺) ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = 𝑦} ↔ ((0g‘𝐺) ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((0g‘𝐺) + 𝑦) = 𝑦)) |
46 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑦 = (0g‘𝐺) →
((0g‘𝐺)
+ 𝑦) = ((0g‘𝐺) + (0g‘𝐺))) |
47 | | id 22 |
. . . . . . . 8
⊢ (𝑦 = (0g‘𝐺) → 𝑦 = (0g‘𝐺)) |
48 | 46, 47 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑦 = (0g‘𝐺) →
(((0g‘𝐺)
+ 𝑦) = 𝑦 ↔ ((0g‘𝐺) + (0g‘𝐺)) = (0g‘𝐺))) |
49 | 48 | rspcva 3559 |
. . . . . 6
⊢
(((0g‘𝐺) ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((0g‘𝐺) + 𝑦) = 𝑦) → ((0g‘𝐺) + (0g‘𝐺)) = (0g‘𝐺)) |
50 | 45, 49 | sylbi 216 |
. . . . 5
⊢
((0g‘𝐺) ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = 𝑦} → ((0g‘𝐺) + (0g‘𝐺)) = (0g‘𝐺)) |
51 | 41, 50 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ((0g‘𝐺) + (0g‘𝐺)) = (0g‘𝐺)) |
52 | 22 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝑁 ∈ (ℤ≥‘𝑀)) |
53 | 35 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g‘𝐺)}) |
54 | 13 | ffvelrnda 6961 |
. . . . . 6
⊢ (((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹‘𝑧) ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) |
55 | 53, 54 | sseldd 3922 |
. . . . 5
⊢ (((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹‘𝑧) ∈ {(0g‘𝐺)}) |
56 | | elsni 4578 |
. . . . 5
⊢ ((𝐹‘𝑧) ∈ {(0g‘𝐺)} → (𝐹‘𝑧) = (0g‘𝐺)) |
57 | 55, 56 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹‘𝑧) = (0g‘𝐺)) |
58 | 51, 52, 57 | seqid3 13767 |
. . 3
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (seq𝑀( + , 𝐹)‘𝑁) = (0g‘𝐺)) |
59 | 14, 58 | eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁)) |
60 | 5 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐺 ∈ 𝑉) |
61 | 22 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝑁 ∈ (ℤ≥‘𝑀)) |
62 | 8 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹:(𝑀...𝑁)⟶𝐵) |
63 | | simpr 485 |
. . 3
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ¬ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) |
64 | 1, 3, 60, 61, 62, 4, 63 | gsumval2a 18369 |
. 2
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁)) |
65 | 59, 64 | pm2.61dan 810 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁)) |