MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval2 Structured version   Visualization version   GIF version

Theorem gsumval2 18724
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b 𝐵 = (Base‘𝐺)
gsumval2.p + = (+g𝐺)
gsumval2.g (𝜑𝐺𝑉)
gsumval2.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumval2.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumval2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))

Proof of Theorem gsumval2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2740 . . . 4 (0g𝐺) = (0g𝐺)
3 gsumval2.p . . . 4 + = (+g𝐺)
4 eqid 2740 . . . 4 {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
5 gsumval2.g . . . . 5 (𝜑𝐺𝑉)
65adantr 480 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐺𝑉)
7 ovexd 7483 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝑀...𝑁) ∈ V)
8 gsumval2.f . . . . . . 7 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
98ffnd 6748 . . . . . 6 (𝜑𝐹 Fn (𝑀...𝑁))
109adantr 480 . . . . 5 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹 Fn (𝑀...𝑁))
11 simpr 484 . . . . 5 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
12 df-f 6577 . . . . 5 (𝐹:(𝑀...𝑁)⟶{𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ↔ (𝐹 Fn (𝑀...𝑁) ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}))
1310, 11, 12sylanbrc 582 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹:(𝑀...𝑁)⟶{𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
141, 2, 3, 4, 6, 7, 13gsumval1 18721 . . 3 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (0g𝐺))
15 simpl 482 . . . . . . . . 9 (((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → (𝑥 + 𝑦) = 𝑦)
1615ralimi 3089 . . . . . . . 8 (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦)
1716a1i 11 . . . . . . 7 (𝑥𝐵 → (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦))
1817ss2rabi 4100 . . . . . 6 {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦}
19 fvex 6933 . . . . . . . 8 (0g𝐺) ∈ V
2019snid 4684 . . . . . . 7 (0g𝐺) ∈ {(0g𝐺)}
218fdmd 6757 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = (𝑀...𝑁))
22 gsumval2.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ𝑀))
23 eluzfz1 13591 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
24 ne0i 4364 . . . . . . . . . . . . . 14 (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) ≠ ∅)
2522, 23, 243syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝑀...𝑁) ≠ ∅)
2621, 25eqnetrd 3014 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 ≠ ∅)
27 dm0rn0 5949 . . . . . . . . . . . . 13 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
2827necon3bii 2999 . . . . . . . . . . . 12 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
2926, 28sylib 218 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ≠ ∅)
3029adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ran 𝐹 ≠ ∅)
31 ssn0 4427 . . . . . . . . . 10 ((ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ∧ ran 𝐹 ≠ ∅) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ≠ ∅)
3211, 30, 31syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ≠ ∅)
3332neneqd 2951 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ¬ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅)
341, 2, 3, 4mgmidsssn0 18710 . . . . . . . . . . 11 (𝐺𝑉 → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)})
355, 34syl 17 . . . . . . . . . 10 (𝜑 → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)})
36 sssn 4851 . . . . . . . . . 10 ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)} ↔ ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅ ∨ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)}))
3735, 36sylib 218 . . . . . . . . 9 (𝜑 → ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅ ∨ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)}))
3837orcanai 1003 . . . . . . . 8 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)})
3933, 38syldan 590 . . . . . . 7 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)})
4020, 39eleqtrrid 2851 . . . . . 6 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
4118, 40sselid 4006 . . . . 5 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦})
42 oveq1 7455 . . . . . . . . 9 (𝑥 = (0g𝐺) → (𝑥 + 𝑦) = ((0g𝐺) + 𝑦))
4342eqeq1d 2742 . . . . . . . 8 (𝑥 = (0g𝐺) → ((𝑥 + 𝑦) = 𝑦 ↔ ((0g𝐺) + 𝑦) = 𝑦))
4443ralbidv 3184 . . . . . . 7 (𝑥 = (0g𝐺) → (∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦 ↔ ∀𝑦𝐵 ((0g𝐺) + 𝑦) = 𝑦))
4544elrab 3708 . . . . . 6 ((0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦} ↔ ((0g𝐺) ∈ 𝐵 ∧ ∀𝑦𝐵 ((0g𝐺) + 𝑦) = 𝑦))
46 oveq2 7456 . . . . . . . 8 (𝑦 = (0g𝐺) → ((0g𝐺) + 𝑦) = ((0g𝐺) + (0g𝐺)))
47 id 22 . . . . . . . 8 (𝑦 = (0g𝐺) → 𝑦 = (0g𝐺))
4846, 47eqeq12d 2756 . . . . . . 7 (𝑦 = (0g𝐺) → (((0g𝐺) + 𝑦) = 𝑦 ↔ ((0g𝐺) + (0g𝐺)) = (0g𝐺)))
4948rspcva 3633 . . . . . 6 (((0g𝐺) ∈ 𝐵 ∧ ∀𝑦𝐵 ((0g𝐺) + 𝑦) = 𝑦) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5045, 49sylbi 217 . . . . 5 ((0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦} → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5141, 50syl 17 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5222adantr 480 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝑁 ∈ (ℤ𝑀))
5335ad2antrr 725 . . . . . 6 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)})
5413ffvelcdmda 7118 . . . . . 6 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹𝑧) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
5553, 54sseldd 4009 . . . . 5 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹𝑧) ∈ {(0g𝐺)})
56 elsni 4665 . . . . 5 ((𝐹𝑧) ∈ {(0g𝐺)} → (𝐹𝑧) = (0g𝐺))
5755, 56syl 17 . . . 4 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹𝑧) = (0g𝐺))
5851, 52, 57seqid3 14097 . . 3 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (seq𝑀( + , 𝐹)‘𝑁) = (0g𝐺))
5914, 58eqtr4d 2783 . 2 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
605adantr 480 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐺𝑉)
6122adantr 480 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝑁 ∈ (ℤ𝑀))
628adantr 480 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹:(𝑀...𝑁)⟶𝐵)
63 simpr 484 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
641, 3, 60, 61, 62, 4, 63gsumval2a 18723 . 2 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
6559, 64pm2.61dan 812 1 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  wss 3976  c0 4352  {csn 4648  dom cdm 5700  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cuz 12903  ...cfz 13567  seqcseq 14052  Basecbs 17258  +gcplusg 17311  0gc0g 17499   Σg cgsu 17500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-0g 17501  df-gsum 17502
This theorem is referenced by:  gsumsplit1r  18725  gsumprval  18726  gsumwsubmcl  18872  gsumws1  18873  gsumsgrpccat  18875  gsumwmhm  18880  mulgnngsum  19119  gsumval3  19949  gsummptfzcl  20011  gsumncl  34517  gsumnunsn  34518
  Copyright terms: Public domain W3C validator