MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval2 Structured version   Visualization version   GIF version

Theorem gsumval2 18546
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b 𝐵 = (Base‘𝐺)
gsumval2.p + = (+g𝐺)
gsumval2.g (𝜑𝐺𝑉)
gsumval2.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumval2.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumval2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))

Proof of Theorem gsumval2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2733 . . . 4 (0g𝐺) = (0g𝐺)
3 gsumval2.p . . . 4 + = (+g𝐺)
4 eqid 2733 . . . 4 {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
5 gsumval2.g . . . . 5 (𝜑𝐺𝑉)
65adantr 482 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐺𝑉)
7 ovexd 7393 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝑀...𝑁) ∈ V)
8 gsumval2.f . . . . . . 7 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
98ffnd 6670 . . . . . 6 (𝜑𝐹 Fn (𝑀...𝑁))
109adantr 482 . . . . 5 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹 Fn (𝑀...𝑁))
11 simpr 486 . . . . 5 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
12 df-f 6501 . . . . 5 (𝐹:(𝑀...𝑁)⟶{𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ↔ (𝐹 Fn (𝑀...𝑁) ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}))
1310, 11, 12sylanbrc 584 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹:(𝑀...𝑁)⟶{𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
141, 2, 3, 4, 6, 7, 13gsumval1 18543 . . 3 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (0g𝐺))
15 simpl 484 . . . . . . . . 9 (((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → (𝑥 + 𝑦) = 𝑦)
1615ralimi 3083 . . . . . . . 8 (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦)
1716a1i 11 . . . . . . 7 (𝑥𝐵 → (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦))
1817ss2rabi 4035 . . . . . 6 {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦}
19 fvex 6856 . . . . . . . 8 (0g𝐺) ∈ V
2019snid 4623 . . . . . . 7 (0g𝐺) ∈ {(0g𝐺)}
218fdmd 6680 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = (𝑀...𝑁))
22 gsumval2.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ𝑀))
23 eluzfz1 13454 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
24 ne0i 4295 . . . . . . . . . . . . . 14 (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) ≠ ∅)
2522, 23, 243syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝑀...𝑁) ≠ ∅)
2621, 25eqnetrd 3008 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 ≠ ∅)
27 dm0rn0 5881 . . . . . . . . . . . . 13 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
2827necon3bii 2993 . . . . . . . . . . . 12 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
2926, 28sylib 217 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ≠ ∅)
3029adantr 482 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ran 𝐹 ≠ ∅)
31 ssn0 4361 . . . . . . . . . 10 ((ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ∧ ran 𝐹 ≠ ∅) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ≠ ∅)
3211, 30, 31syl2anc 585 . . . . . . . . 9 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ≠ ∅)
3332neneqd 2945 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ¬ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅)
341, 2, 3, 4mgmidsssn0 18532 . . . . . . . . . . 11 (𝐺𝑉 → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)})
355, 34syl 17 . . . . . . . . . 10 (𝜑 → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)})
36 sssn 4787 . . . . . . . . . 10 ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)} ↔ ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅ ∨ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)}))
3735, 36sylib 217 . . . . . . . . 9 (𝜑 → ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅ ∨ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)}))
3837orcanai 1002 . . . . . . . 8 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)})
3933, 38syldan 592 . . . . . . 7 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)})
4020, 39eleqtrrid 2841 . . . . . 6 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
4118, 40sselid 3943 . . . . 5 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦})
42 oveq1 7365 . . . . . . . . 9 (𝑥 = (0g𝐺) → (𝑥 + 𝑦) = ((0g𝐺) + 𝑦))
4342eqeq1d 2735 . . . . . . . 8 (𝑥 = (0g𝐺) → ((𝑥 + 𝑦) = 𝑦 ↔ ((0g𝐺) + 𝑦) = 𝑦))
4443ralbidv 3171 . . . . . . 7 (𝑥 = (0g𝐺) → (∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦 ↔ ∀𝑦𝐵 ((0g𝐺) + 𝑦) = 𝑦))
4544elrab 3646 . . . . . 6 ((0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦} ↔ ((0g𝐺) ∈ 𝐵 ∧ ∀𝑦𝐵 ((0g𝐺) + 𝑦) = 𝑦))
46 oveq2 7366 . . . . . . . 8 (𝑦 = (0g𝐺) → ((0g𝐺) + 𝑦) = ((0g𝐺) + (0g𝐺)))
47 id 22 . . . . . . . 8 (𝑦 = (0g𝐺) → 𝑦 = (0g𝐺))
4846, 47eqeq12d 2749 . . . . . . 7 (𝑦 = (0g𝐺) → (((0g𝐺) + 𝑦) = 𝑦 ↔ ((0g𝐺) + (0g𝐺)) = (0g𝐺)))
4948rspcva 3578 . . . . . 6 (((0g𝐺) ∈ 𝐵 ∧ ∀𝑦𝐵 ((0g𝐺) + 𝑦) = 𝑦) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5045, 49sylbi 216 . . . . 5 ((0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦} → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5141, 50syl 17 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5222adantr 482 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝑁 ∈ (ℤ𝑀))
5335ad2antrr 725 . . . . . 6 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)})
5413ffvelcdmda 7036 . . . . . 6 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹𝑧) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
5553, 54sseldd 3946 . . . . 5 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹𝑧) ∈ {(0g𝐺)})
56 elsni 4604 . . . . 5 ((𝐹𝑧) ∈ {(0g𝐺)} → (𝐹𝑧) = (0g𝐺))
5755, 56syl 17 . . . 4 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹𝑧) = (0g𝐺))
5851, 52, 57seqid3 13958 . . 3 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (seq𝑀( + , 𝐹)‘𝑁) = (0g𝐺))
5914, 58eqtr4d 2776 . 2 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
605adantr 482 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐺𝑉)
6122adantr 482 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝑁 ∈ (ℤ𝑀))
628adantr 482 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹:(𝑀...𝑁)⟶𝐵)
63 simpr 486 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
641, 3, 60, 61, 62, 4, 63gsumval2a 18545 . 2 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
6559, 64pm2.61dan 812 1 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2940  wral 3061  {crab 3406  Vcvv 3444  wss 3911  c0 4283  {csn 4587  dom cdm 5634  ran crn 5635   Fn wfn 6492  wf 6493  cfv 6497  (class class class)co 7358  cuz 12768  ...cfz 13430  seqcseq 13912  Basecbs 17088  +gcplusg 17138  0gc0g 17326   Σg cgsu 17327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-seq 13913  df-0g 17328  df-gsum 17329
This theorem is referenced by:  gsumsplit1r  18547  gsumprval  18548  gsumwsubmcl  18652  gsumws1  18653  gsumsgrpccat  18655  gsumwmhm  18660  mulgnngsum  18886  gsumval3  19689  gsummptfzcl  19751  gsumncl  33209  gsumnunsn  33210
  Copyright terms: Public domain W3C validator