MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval2 Structured version   Visualization version   GIF version

Theorem gsumval2 18712
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b 𝐵 = (Base‘𝐺)
gsumval2.p + = (+g𝐺)
gsumval2.g (𝜑𝐺𝑉)
gsumval2.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumval2.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
Assertion
Ref Expression
gsumval2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))

Proof of Theorem gsumval2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2735 . . . 4 (0g𝐺) = (0g𝐺)
3 gsumval2.p . . . 4 + = (+g𝐺)
4 eqid 2735 . . . 4 {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
5 gsumval2.g . . . . 5 (𝜑𝐺𝑉)
65adantr 480 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐺𝑉)
7 ovexd 7466 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝑀...𝑁) ∈ V)
8 gsumval2.f . . . . . . 7 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
98ffnd 6738 . . . . . 6 (𝜑𝐹 Fn (𝑀...𝑁))
109adantr 480 . . . . 5 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹 Fn (𝑀...𝑁))
11 simpr 484 . . . . 5 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
12 df-f 6567 . . . . 5 (𝐹:(𝑀...𝑁)⟶{𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ↔ (𝐹 Fn (𝑀...𝑁) ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}))
1310, 11, 12sylanbrc 583 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹:(𝑀...𝑁)⟶{𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
141, 2, 3, 4, 6, 7, 13gsumval1 18709 . . 3 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (0g𝐺))
15 simpl 482 . . . . . . . . 9 (((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → (𝑥 + 𝑦) = 𝑦)
1615ralimi 3081 . . . . . . . 8 (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦)
1716a1i 11 . . . . . . 7 (𝑥𝐵 → (∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦))
1817ss2rabi 4087 . . . . . 6 {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦}
19 fvex 6920 . . . . . . . 8 (0g𝐺) ∈ V
2019snid 4667 . . . . . . 7 (0g𝐺) ∈ {(0g𝐺)}
218fdmd 6747 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = (𝑀...𝑁))
22 gsumval2.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ𝑀))
23 eluzfz1 13568 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
24 ne0i 4347 . . . . . . . . . . . . . 14 (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) ≠ ∅)
2522, 23, 243syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝑀...𝑁) ≠ ∅)
2621, 25eqnetrd 3006 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 ≠ ∅)
27 dm0rn0 5938 . . . . . . . . . . . . 13 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
2827necon3bii 2991 . . . . . . . . . . . 12 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
2926, 28sylib 218 . . . . . . . . . . 11 (𝜑 → ran 𝐹 ≠ ∅)
3029adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ran 𝐹 ≠ ∅)
31 ssn0 4410 . . . . . . . . . 10 ((ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ∧ ran 𝐹 ≠ ∅) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ≠ ∅)
3211, 30, 31syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ≠ ∅)
3332neneqd 2943 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ¬ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅)
341, 2, 3, 4mgmidsssn0 18698 . . . . . . . . . . 11 (𝐺𝑉 → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)})
355, 34syl 17 . . . . . . . . . 10 (𝜑 → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)})
36 sssn 4831 . . . . . . . . . 10 ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)} ↔ ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅ ∨ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)}))
3735, 36sylib 218 . . . . . . . . 9 (𝜑 → ({𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅ ∨ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)}))
3837orcanai 1004 . . . . . . . 8 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)})
3933, 38syldan 591 . . . . . . 7 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g𝐺)})
4020, 39eleqtrrid 2846 . . . . . 6 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
4118, 40sselid 3993 . . . . 5 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦})
42 oveq1 7438 . . . . . . . . 9 (𝑥 = (0g𝐺) → (𝑥 + 𝑦) = ((0g𝐺) + 𝑦))
4342eqeq1d 2737 . . . . . . . 8 (𝑥 = (0g𝐺) → ((𝑥 + 𝑦) = 𝑦 ↔ ((0g𝐺) + 𝑦) = 𝑦))
4443ralbidv 3176 . . . . . . 7 (𝑥 = (0g𝐺) → (∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦 ↔ ∀𝑦𝐵 ((0g𝐺) + 𝑦) = 𝑦))
4544elrab 3695 . . . . . 6 ((0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦} ↔ ((0g𝐺) ∈ 𝐵 ∧ ∀𝑦𝐵 ((0g𝐺) + 𝑦) = 𝑦))
46 oveq2 7439 . . . . . . . 8 (𝑦 = (0g𝐺) → ((0g𝐺) + 𝑦) = ((0g𝐺) + (0g𝐺)))
47 id 22 . . . . . . . 8 (𝑦 = (0g𝐺) → 𝑦 = (0g𝐺))
4846, 47eqeq12d 2751 . . . . . . 7 (𝑦 = (0g𝐺) → (((0g𝐺) + 𝑦) = 𝑦 ↔ ((0g𝐺) + (0g𝐺)) = (0g𝐺)))
4948rspcva 3620 . . . . . 6 (((0g𝐺) ∈ 𝐵 ∧ ∀𝑦𝐵 ((0g𝐺) + 𝑦) = 𝑦) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5045, 49sylbi 217 . . . . 5 ((0g𝐺) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 (𝑥 + 𝑦) = 𝑦} → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5141, 50syl 17 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
5222adantr 480 . . . 4 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝑁 ∈ (ℤ𝑀))
5335ad2antrr 726 . . . . . 6 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g𝐺)})
5413ffvelcdmda 7104 . . . . . 6 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹𝑧) ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
5553, 54sseldd 3996 . . . . 5 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹𝑧) ∈ {(0g𝐺)})
56 elsni 4648 . . . . 5 ((𝐹𝑧) ∈ {(0g𝐺)} → (𝐹𝑧) = (0g𝐺))
5755, 56syl 17 . . . 4 (((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹𝑧) = (0g𝐺))
5851, 52, 57seqid3 14084 . . 3 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (seq𝑀( + , 𝐹)‘𝑁) = (0g𝐺))
5914, 58eqtr4d 2778 . 2 ((𝜑 ∧ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
605adantr 480 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐺𝑉)
6122adantr 480 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝑁 ∈ (ℤ𝑀))
628adantr 480 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹:(𝑀...𝑁)⟶𝐵)
63 simpr 484 . . 3 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})
641, 3, 60, 61, 62, 4, 63gsumval2a 18711 . 2 ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
6559, 64pm2.61dan 813 1 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  Vcvv 3478  wss 3963  c0 4339  {csn 4631  dom cdm 5689  ran crn 5690   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  cuz 12876  ...cfz 13544  seqcseq 14039  Basecbs 17245  +gcplusg 17298  0gc0g 17486   Σg cgsu 17487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040  df-0g 17488  df-gsum 17489
This theorem is referenced by:  gsumsplit1r  18713  gsumprval  18714  gsumwsubmcl  18863  gsumws1  18864  gsumsgrpccat  18866  gsumwmhm  18871  mulgnngsum  19110  gsumval3  19940  gsummptfzcl  20002  gsumncl  34534  gsumnunsn  34535
  Copyright terms: Public domain W3C validator