| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | gsumval2.b | . . . 4
⊢ 𝐵 = (Base‘𝐺) | 
| 2 |  | eqid 2736 | . . . 4
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 3 |  | gsumval2.p | . . . 4
⊢  + =
(+g‘𝐺) | 
| 4 |  | eqid 2736 | . . . 4
⊢ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | 
| 5 |  | gsumval2.g | . . . . 5
⊢ (𝜑 → 𝐺 ∈ 𝑉) | 
| 6 | 5 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐺 ∈ 𝑉) | 
| 7 |  | ovexd 7467 | . . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝑀...𝑁) ∈ V) | 
| 8 |  | gsumval2.f | . . . . . . 7
⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) | 
| 9 | 8 | ffnd 6736 | . . . . . 6
⊢ (𝜑 → 𝐹 Fn (𝑀...𝑁)) | 
| 10 | 9 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹 Fn (𝑀...𝑁)) | 
| 11 |  | simpr 484 | . . . . 5
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) | 
| 12 |  | df-f 6564 | . . . . 5
⊢ (𝐹:(𝑀...𝑁)⟶{𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ↔ (𝐹 Fn (𝑀...𝑁) ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)})) | 
| 13 | 10, 11, 12 | sylanbrc 583 | . . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹:(𝑀...𝑁)⟶{𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) | 
| 14 | 1, 2, 3, 4, 6, 7, 13 | gsumval1 18697 | . . 3
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (0g‘𝐺)) | 
| 15 |  | simpl 482 | . . . . . . . . 9
⊢ (((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → (𝑥 + 𝑦) = 𝑦) | 
| 16 | 15 | ralimi 3082 | . . . . . . . 8
⊢
(∀𝑦 ∈
𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = 𝑦) | 
| 17 | 16 | a1i 11 | . . . . . . 7
⊢ (𝑥 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = 𝑦)) | 
| 18 | 17 | ss2rabi 4076 | . . . . . 6
⊢ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = 𝑦} | 
| 19 |  | fvex 6918 | . . . . . . . 8
⊢
(0g‘𝐺) ∈ V | 
| 20 | 19 | snid 4661 | . . . . . . 7
⊢
(0g‘𝐺) ∈ {(0g‘𝐺)} | 
| 21 | 8 | fdmd 6745 | . . . . . . . . . . . . 13
⊢ (𝜑 → dom 𝐹 = (𝑀...𝑁)) | 
| 22 |  | gsumval2.n | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 23 |  | eluzfz1 13572 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | 
| 24 |  | ne0i 4340 | . . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (𝑀...𝑁) → (𝑀...𝑁) ≠ ∅) | 
| 25 | 22, 23, 24 | 3syl 18 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀...𝑁) ≠ ∅) | 
| 26 | 21, 25 | eqnetrd 3007 | . . . . . . . . . . . 12
⊢ (𝜑 → dom 𝐹 ≠ ∅) | 
| 27 |  | dm0rn0 5934 | . . . . . . . . . . . . 13
⊢ (dom
𝐹 = ∅ ↔ ran
𝐹 =
∅) | 
| 28 | 27 | necon3bii 2992 | . . . . . . . . . . . 12
⊢ (dom
𝐹 ≠ ∅ ↔ ran
𝐹 ≠
∅) | 
| 29 | 26, 28 | sylib 218 | . . . . . . . . . . 11
⊢ (𝜑 → ran 𝐹 ≠ ∅) | 
| 30 | 29 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ran 𝐹 ≠ ∅) | 
| 31 |  | ssn0 4403 | . . . . . . . . . 10
⊢ ((ran
𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ∧ ran 𝐹 ≠ ∅) → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ≠ ∅) | 
| 32 | 11, 30, 31 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ≠ ∅) | 
| 33 | 32 | neneqd 2944 | . . . . . . . 8
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ¬ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅) | 
| 34 | 1, 2, 3, 4 | mgmidsssn0 18686 | . . . . . . . . . . 11
⊢ (𝐺 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g‘𝐺)}) | 
| 35 | 5, 34 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g‘𝐺)}) | 
| 36 |  | sssn 4825 | . . . . . . . . . 10
⊢ ({𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g‘𝐺)} ↔ ({𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅ ∨ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g‘𝐺)})) | 
| 37 | 35, 36 | sylib 218 | . . . . . . . . 9
⊢ (𝜑 → ({𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅ ∨ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g‘𝐺)})) | 
| 38 | 37 | orcanai 1004 | . . . . . . . 8
⊢ ((𝜑 ∧ ¬ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = ∅) → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g‘𝐺)}) | 
| 39 | 33, 38 | syldan 591 | . . . . . . 7
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} = {(0g‘𝐺)}) | 
| 40 | 20, 39 | eleqtrrid 2847 | . . . . . 6
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (0g‘𝐺) ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) | 
| 41 | 18, 40 | sselid 3980 | . . . . 5
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (0g‘𝐺) ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = 𝑦}) | 
| 42 |  | oveq1 7439 | . . . . . . . . 9
⊢ (𝑥 = (0g‘𝐺) → (𝑥 + 𝑦) = ((0g‘𝐺) + 𝑦)) | 
| 43 | 42 | eqeq1d 2738 | . . . . . . . 8
⊢ (𝑥 = (0g‘𝐺) → ((𝑥 + 𝑦) = 𝑦 ↔ ((0g‘𝐺) + 𝑦) = 𝑦)) | 
| 44 | 43 | ralbidv 3177 | . . . . . . 7
⊢ (𝑥 = (0g‘𝐺) → (∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = 𝑦 ↔ ∀𝑦 ∈ 𝐵 ((0g‘𝐺) + 𝑦) = 𝑦)) | 
| 45 | 44 | elrab 3691 | . . . . . 6
⊢
((0g‘𝐺) ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = 𝑦} ↔ ((0g‘𝐺) ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((0g‘𝐺) + 𝑦) = 𝑦)) | 
| 46 |  | oveq2 7440 | . . . . . . . 8
⊢ (𝑦 = (0g‘𝐺) →
((0g‘𝐺)
+ 𝑦) = ((0g‘𝐺) + (0g‘𝐺))) | 
| 47 |  | id 22 | . . . . . . . 8
⊢ (𝑦 = (0g‘𝐺) → 𝑦 = (0g‘𝐺)) | 
| 48 | 46, 47 | eqeq12d 2752 | . . . . . . 7
⊢ (𝑦 = (0g‘𝐺) →
(((0g‘𝐺)
+ 𝑦) = 𝑦 ↔ ((0g‘𝐺) + (0g‘𝐺)) = (0g‘𝐺))) | 
| 49 | 48 | rspcva 3619 | . . . . . 6
⊢
(((0g‘𝐺) ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((0g‘𝐺) + 𝑦) = 𝑦) → ((0g‘𝐺) + (0g‘𝐺)) = (0g‘𝐺)) | 
| 50 | 45, 49 | sylbi 217 | . . . . 5
⊢
((0g‘𝐺) ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = 𝑦} → ((0g‘𝐺) + (0g‘𝐺)) = (0g‘𝐺)) | 
| 51 | 41, 50 | syl 17 | . . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ((0g‘𝐺) + (0g‘𝐺)) = (0g‘𝐺)) | 
| 52 | 22 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 53 | 35 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ {(0g‘𝐺)}) | 
| 54 | 13 | ffvelcdmda 7103 | . . . . . 6
⊢ (((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹‘𝑧) ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) | 
| 55 | 53, 54 | sseldd 3983 | . . . . 5
⊢ (((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹‘𝑧) ∈ {(0g‘𝐺)}) | 
| 56 |  | elsni 4642 | . . . . 5
⊢ ((𝐹‘𝑧) ∈ {(0g‘𝐺)} → (𝐹‘𝑧) = (0g‘𝐺)) | 
| 57 | 55, 56 | syl 17 | . . . 4
⊢ (((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) ∧ 𝑧 ∈ (𝑀...𝑁)) → (𝐹‘𝑧) = (0g‘𝐺)) | 
| 58 | 51, 52, 57 | seqid3 14088 | . . 3
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (seq𝑀( + , 𝐹)‘𝑁) = (0g‘𝐺)) | 
| 59 | 14, 58 | eqtr4d 2779 | . 2
⊢ ((𝜑 ∧ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁)) | 
| 60 | 5 | adantr 480 | . . 3
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐺 ∈ 𝑉) | 
| 61 | 22 | adantr 480 | . . 3
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 62 | 8 | adantr 480 | . . 3
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → 𝐹:(𝑀...𝑁)⟶𝐵) | 
| 63 |  | simpr 484 | . . 3
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → ¬ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) | 
| 64 | 1, 3, 60, 61, 62, 4, 63 | gsumval2a 18699 | . 2
⊢ ((𝜑 ∧ ¬ ran 𝐹 ⊆ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}) → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁)) | 
| 65 | 59, 64 | pm2.61dan 812 | 1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁)) |