MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3 Structured version   Visualization version   GIF version

Theorem gsumval3 18793
Description: Value of the group sum operation over an arbitrary finite set. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3.m (𝜑𝑀 ∈ ℕ)
gsumval3.h (𝜑𝐻:(1...𝑀)–1-1𝐴)
gsumval3.n (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
gsumval3.w 𝑊 = ((𝐹𝐻) supp 0 )
Assertion
Ref Expression
gsumval3 (𝜑 → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝐻))‘𝑀))

Proof of Theorem gsumval3
Dummy variables 𝑓 𝑘 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.g . . . . 5 (𝜑𝐺 ∈ Mnd)
2 gsumval3.a . . . . 5 (𝜑𝐴𝑉)
3 gsumval3.0 . . . . . 6 0 = (0g𝐺)
43gsumz 17854 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑥𝐴0 )) = 0 )
51, 2, 4syl2anc 576 . . . 4 (𝜑 → (𝐺 Σg (𝑥𝐴0 )) = 0 )
65adantr 473 . . 3 ((𝜑𝑊 = ∅) → (𝐺 Σg (𝑥𝐴0 )) = 0 )
7 gsumval3.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
87feqmptd 6560 . . . . . 6 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
98adantr 473 . . . . 5 ((𝜑𝑊 = ∅) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
10 gsumval3.h . . . . . . . . . . . . . 14 (𝜑𝐻:(1...𝑀)–1-1𝐴)
11 f1f 6401 . . . . . . . . . . . . . 14 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)⟶𝐴)
1210, 11syl 17 . . . . . . . . . . . . 13 (𝜑𝐻:(1...𝑀)⟶𝐴)
1312ad2antrr 714 . . . . . . . . . . . 12 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ ran 𝐻) → 𝐻:(1...𝑀)⟶𝐴)
14 f1f1orn 6452 . . . . . . . . . . . . . . . 16 (𝐻:(1...𝑀)–1-1𝐴𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
1510, 14syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
1615adantr 473 . . . . . . . . . . . . . 14 ((𝜑𝑊 = ∅) → 𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
17 f1ocnv 6453 . . . . . . . . . . . . . 14 (𝐻:(1...𝑀)–1-1-onto→ran 𝐻𝐻:ran 𝐻1-1-onto→(1...𝑀))
18 f1of 6441 . . . . . . . . . . . . . 14 (𝐻:ran 𝐻1-1-onto→(1...𝑀) → 𝐻:ran 𝐻⟶(1...𝑀))
1916, 17, 183syl 18 . . . . . . . . . . . . 13 ((𝜑𝑊 = ∅) → 𝐻:ran 𝐻⟶(1...𝑀))
2019ffvelrnda 6674 . . . . . . . . . . . 12 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ ran 𝐻) → (𝐻𝑥) ∈ (1...𝑀))
21 fvco3 6586 . . . . . . . . . . . 12 ((𝐻:(1...𝑀)⟶𝐴 ∧ (𝐻𝑥) ∈ (1...𝑀)) → ((𝐹𝐻)‘(𝐻𝑥)) = (𝐹‘(𝐻‘(𝐻𝑥))))
2213, 20, 21syl2anc 576 . . . . . . . . . . 11 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ ran 𝐻) → ((𝐹𝐻)‘(𝐻𝑥)) = (𝐹‘(𝐻‘(𝐻𝑥))))
23 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑𝑊 = ∅) → 𝑊 = ∅)
2423difeq2d 3982 . . . . . . . . . . . . . . 15 ((𝜑𝑊 = ∅) → ((1...𝑀) ∖ 𝑊) = ((1...𝑀) ∖ ∅))
25 dif0 4212 . . . . . . . . . . . . . . 15 ((1...𝑀) ∖ ∅) = (1...𝑀)
2624, 25syl6eq 2823 . . . . . . . . . . . . . 14 ((𝜑𝑊 = ∅) → ((1...𝑀) ∖ 𝑊) = (1...𝑀))
2726adantr 473 . . . . . . . . . . . . 13 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ ran 𝐻) → ((1...𝑀) ∖ 𝑊) = (1...𝑀))
2820, 27eleqtrrd 2862 . . . . . . . . . . . 12 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ ran 𝐻) → (𝐻𝑥) ∈ ((1...𝑀) ∖ 𝑊))
29 fco 6358 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐵𝐻:(1...𝑀)⟶𝐴) → (𝐹𝐻):(1...𝑀)⟶𝐵)
307, 12, 29syl2anc 576 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐻):(1...𝑀)⟶𝐵)
3130adantr 473 . . . . . . . . . . . . 13 ((𝜑𝑊 = ∅) → (𝐹𝐻):(1...𝑀)⟶𝐵)
32 gsumval3.w . . . . . . . . . . . . . . 15 𝑊 = ((𝐹𝐻) supp 0 )
3332eqimss2i 3909 . . . . . . . . . . . . . 14 ((𝐹𝐻) supp 0 ) ⊆ 𝑊
3433a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑊 = ∅) → ((𝐹𝐻) supp 0 ) ⊆ 𝑊)
35 ovexd 7008 . . . . . . . . . . . . 13 ((𝜑𝑊 = ∅) → (1...𝑀) ∈ V)
363fvexi 6510 . . . . . . . . . . . . . 14 0 ∈ V
3736a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑊 = ∅) → 0 ∈ V)
3831, 34, 35, 37suppssr 7662 . . . . . . . . . . . 12 (((𝜑𝑊 = ∅) ∧ (𝐻𝑥) ∈ ((1...𝑀) ∖ 𝑊)) → ((𝐹𝐻)‘(𝐻𝑥)) = 0 )
3928, 38syldan 583 . . . . . . . . . . 11 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ ran 𝐻) → ((𝐹𝐻)‘(𝐻𝑥)) = 0 )
40 f1ocnvfv2 6857 . . . . . . . . . . . . 13 ((𝐻:(1...𝑀)–1-1-onto→ran 𝐻𝑥 ∈ ran 𝐻) → (𝐻‘(𝐻𝑥)) = 𝑥)
4116, 40sylan 572 . . . . . . . . . . . 12 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ ran 𝐻) → (𝐻‘(𝐻𝑥)) = 𝑥)
4241fveq2d 6500 . . . . . . . . . . 11 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ ran 𝐻) → (𝐹‘(𝐻‘(𝐻𝑥))) = (𝐹𝑥))
4322, 39, 423eqtr3rd 2816 . . . . . . . . . 10 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ ran 𝐻) → (𝐹𝑥) = 0 )
44 fvex 6509 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
4544elsn 4450 . . . . . . . . . 10 ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 )
4643, 45sylibr 226 . . . . . . . . 9 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ ran 𝐻) → (𝐹𝑥) ∈ { 0 })
4746adantlr 703 . . . . . . . 8 ((((𝜑𝑊 = ∅) ∧ 𝑥𝐴) ∧ 𝑥 ∈ ran 𝐻) → (𝐹𝑥) ∈ { 0 })
48 eldif 3832 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ ran 𝐻) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐻))
49 gsumval3.n . . . . . . . . . . . . 13 (𝜑 → (𝐹 supp 0 ) ⊆ ran 𝐻)
5036a1i 11 . . . . . . . . . . . . 13 (𝜑0 ∈ V)
517, 49, 2, 50suppssr 7662 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∖ ran 𝐻)) → (𝐹𝑥) = 0 )
5251, 45sylibr 226 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ ran 𝐻)) → (𝐹𝑥) ∈ { 0 })
5348, 52sylan2br 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐻)) → (𝐹𝑥) ∈ { 0 })
5453adantlr 703 . . . . . . . . 9 (((𝜑𝑊 = ∅) ∧ (𝑥𝐴 ∧ ¬ 𝑥 ∈ ran 𝐻)) → (𝐹𝑥) ∈ { 0 })
5554anassrs 460 . . . . . . . 8 ((((𝜑𝑊 = ∅) ∧ 𝑥𝐴) ∧ ¬ 𝑥 ∈ ran 𝐻) → (𝐹𝑥) ∈ { 0 })
5647, 55pm2.61dan 801 . . . . . . 7 (((𝜑𝑊 = ∅) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ { 0 })
5756, 45sylib 210 . . . . . 6 (((𝜑𝑊 = ∅) ∧ 𝑥𝐴) → (𝐹𝑥) = 0 )
5857mpteq2dva 5018 . . . . 5 ((𝜑𝑊 = ∅) → (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴0 ))
599, 58eqtrd 2807 . . . 4 ((𝜑𝑊 = ∅) → 𝐹 = (𝑥𝐴0 ))
6059oveq2d 6990 . . 3 ((𝜑𝑊 = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥𝐴0 )))
61 gsumval3.b . . . . . . 7 𝐵 = (Base‘𝐺)
6261, 3mndidcl 17788 . . . . . 6 (𝐺 ∈ Mnd → 0𝐵)
63 gsumval3.p . . . . . . 7 + = (+g𝐺)
6461, 63, 3mndlid 17791 . . . . . 6 ((𝐺 ∈ Mnd ∧ 0𝐵) → ( 0 + 0 ) = 0 )
651, 62, 64syl2anc2 577 . . . . 5 (𝜑 → ( 0 + 0 ) = 0 )
6665adantr 473 . . . 4 ((𝜑𝑊 = ∅) → ( 0 + 0 ) = 0 )
67 gsumval3.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
68 nnuz 12093 . . . . . 6 ℕ = (ℤ‘1)
6967, 68syl6eleq 2869 . . . . 5 (𝜑𝑀 ∈ (ℤ‘1))
7069adantr 473 . . . 4 ((𝜑𝑊 = ∅) → 𝑀 ∈ (ℤ‘1))
7126eleq2d 2844 . . . . . 6 ((𝜑𝑊 = ∅) → (𝑥 ∈ ((1...𝑀) ∖ 𝑊) ↔ 𝑥 ∈ (1...𝑀)))
7271biimpar 470 . . . . 5 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (1...𝑀)) → 𝑥 ∈ ((1...𝑀) ∖ 𝑊))
7331, 34, 35, 37suppssr 7662 . . . . 5 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ ((1...𝑀) ∖ 𝑊)) → ((𝐹𝐻)‘𝑥) = 0 )
7472, 73syldan 583 . . . 4 (((𝜑𝑊 = ∅) ∧ 𝑥 ∈ (1...𝑀)) → ((𝐹𝐻)‘𝑥) = 0 )
7566, 70, 74seqid3 13227 . . 3 ((𝜑𝑊 = ∅) → (seq1( + , (𝐹𝐻))‘𝑀) = 0 )
766, 60, 753eqtr4d 2817 . 2 ((𝜑𝑊 = ∅) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝐻))‘𝑀))
77 fzf 12710 . . . . 5 ...:(ℤ × ℤ)⟶𝒫 ℤ
78 ffn 6341 . . . . 5 (...:(ℤ × ℤ)⟶𝒫 ℤ → ... Fn (ℤ × ℤ))
79 ovelrn 7138 . . . . 5 (... Fn (ℤ × ℤ) → (𝐴 ∈ ran ... ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝐴 = (𝑚...𝑛)))
8077, 78, 79mp2b 10 . . . 4 (𝐴 ∈ ran ... ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝐴 = (𝑚...𝑛))
811ad2antrr 714 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → 𝐺 ∈ Mnd)
82 simpr 477 . . . . . . . . . . 11 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → 𝐴 = (𝑚...𝑛))
83 frel 6346 . . . . . . . . . . . . . . . . 17 (𝐹:𝐴𝐵 → Rel 𝐹)
84 reldm0 5638 . . . . . . . . . . . . . . . . 17 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
857, 83, 843syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
867fdmd 6350 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝐴)
8786eqeq1d 2773 . . . . . . . . . . . . . . . 16 (𝜑 → (dom 𝐹 = ∅ ↔ 𝐴 = ∅))
8885, 87bitrd 271 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 = ∅ ↔ 𝐴 = ∅))
89 coeq1 5574 . . . . . . . . . . . . . . . . . . 19 (𝐹 = ∅ → (𝐹𝐻) = (∅ ∘ 𝐻))
90 co01 5950 . . . . . . . . . . . . . . . . . . 19 (∅ ∘ 𝐻) = ∅
9189, 90syl6eq 2823 . . . . . . . . . . . . . . . . . 18 (𝐹 = ∅ → (𝐹𝐻) = ∅)
9291oveq1d 6989 . . . . . . . . . . . . . . . . 17 (𝐹 = ∅ → ((𝐹𝐻) supp 0 ) = (∅ supp 0 ))
93 supp0 7636 . . . . . . . . . . . . . . . . . 18 ( 0 ∈ V → (∅ supp 0 ) = ∅)
9436, 93ax-mp 5 . . . . . . . . . . . . . . . . 17 (∅ supp 0 ) = ∅
9592, 94syl6eq 2823 . . . . . . . . . . . . . . . 16 (𝐹 = ∅ → ((𝐹𝐻) supp 0 ) = ∅)
9632, 95syl5eq 2819 . . . . . . . . . . . . . . 15 (𝐹 = ∅ → 𝑊 = ∅)
9788, 96syl6bir 246 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 = ∅ → 𝑊 = ∅))
9897necon3d 2981 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ≠ ∅ → 𝐴 ≠ ∅))
9998imp 398 . . . . . . . . . . . 12 ((𝜑𝑊 ≠ ∅) → 𝐴 ≠ ∅)
10099adantr 473 . . . . . . . . . . 11 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → 𝐴 ≠ ∅)
10182, 100eqnetrrd 3028 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → (𝑚...𝑛) ≠ ∅)
102 fzn0 12735 . . . . . . . . . 10 ((𝑚...𝑛) ≠ ∅ ↔ 𝑛 ∈ (ℤ𝑚))
103101, 102sylib 210 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → 𝑛 ∈ (ℤ𝑚))
1047ad2antrr 714 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → 𝐹:𝐴𝐵)
10582feq2d 6327 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → (𝐹:𝐴𝐵𝐹:(𝑚...𝑛)⟶𝐵))
106104, 105mpbid 224 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → 𝐹:(𝑚...𝑛)⟶𝐵)
10761, 63, 81, 103, 106gsumval2 17760 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → (𝐺 Σg 𝐹) = (seq𝑚( + , 𝐹)‘𝑛))
108 frn 6347 . . . . . . . . . . . . . . 15 (𝐻:(1...𝑀)⟶𝐴 → ran 𝐻𝐴)
10910, 11, 1083syl 18 . . . . . . . . . . . . . 14 (𝜑 → ran 𝐻𝐴)
110109ad2antrr 714 . . . . . . . . . . . . 13 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → ran 𝐻𝐴)
111110, 82sseqtrd 3890 . . . . . . . . . . . 12 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → ran 𝐻 ⊆ (𝑚...𝑛))
112 fzssuz 12762 . . . . . . . . . . . . 13 (𝑚...𝑛) ⊆ (ℤ𝑚)
113 uzssz 12076 . . . . . . . . . . . . . 14 (ℤ𝑚) ⊆ ℤ
114 zssre 11798 . . . . . . . . . . . . . 14 ℤ ⊆ ℝ
115113, 114sstri 3860 . . . . . . . . . . . . 13 (ℤ𝑚) ⊆ ℝ
116112, 115sstri 3860 . . . . . . . . . . . 12 (𝑚...𝑛) ⊆ ℝ
117111, 116syl6ss 3863 . . . . . . . . . . 11 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → ran 𝐻 ⊆ ℝ)
118 ltso 10519 . . . . . . . . . . 11 < Or ℝ
119 soss 5341 . . . . . . . . . . 11 (ran 𝐻 ⊆ ℝ → ( < Or ℝ → < Or ran 𝐻))
120117, 118, 119mpisyl 21 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → < Or ran 𝐻)
121 fzfi 13153 . . . . . . . . . . . 12 (1...𝑀) ∈ Fin
122121a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (1...𝑀) ∈ Fin)
123 fex2 7451 . . . . . . . . . . . . . . 15 ((𝐻:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ Fin ∧ 𝐴𝑉) → 𝐻 ∈ V)
12412, 122, 2, 123syl3anc 1352 . . . . . . . . . . . . . 14 (𝜑𝐻 ∈ V)
125 f1oen3g 8320 . . . . . . . . . . . . . 14 ((𝐻 ∈ V ∧ 𝐻:(1...𝑀)–1-1-onto→ran 𝐻) → (1...𝑀) ≈ ran 𝐻)
126124, 15, 125syl2anc 576 . . . . . . . . . . . . 13 (𝜑 → (1...𝑀) ≈ ran 𝐻)
127 enfi 8527 . . . . . . . . . . . . 13 ((1...𝑀) ≈ ran 𝐻 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
128126, 127syl 17 . . . . . . . . . . . 12 (𝜑 → ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
129121, 128mpbii 225 . . . . . . . . . . 11 (𝜑 → ran 𝐻 ∈ Fin)
130129ad2antrr 714 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → ran 𝐻 ∈ Fin)
131 fz1iso 13631 . . . . . . . . . 10 (( < Or ran 𝐻 ∧ ran 𝐻 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))
132120, 130, 131syl2anc 576 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))
13367nnnn0d 11765 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ0)
134 hashfz1 13519 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
135133, 134syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
136122, 15hasheqf1od 13527 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘(1...𝑀)) = (♯‘ran 𝐻))
137135, 136eqtr3d 2809 . . . . . . . . . . . . . 14 (𝜑𝑀 = (♯‘ran 𝐻))
138137ad2antrr 714 . . . . . . . . . . . . 13 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝑀 = (♯‘ran 𝐻))
139138fveq2d 6500 . . . . . . . . . . . 12 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (seq1( + , (𝐹𝑓))‘𝑀) = (seq1( + , (𝐹𝑓))‘(♯‘ran 𝐻)))
1401ad2antrr 714 . . . . . . . . . . . . . 14 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝐺 ∈ Mnd)
14161, 63mndcl 17781 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
1421413expb 1101 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
143140, 142sylan 572 . . . . . . . . . . . . 13 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
144 gsumval3.c . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
145144ad2antrr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
146145sselda 3851 . . . . . . . . . . . . . . 15 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑥 ∈ ran 𝐹) → 𝑥 ∈ (𝑍‘ran 𝐹))
147 gsumval3.z . . . . . . . . . . . . . . . 16 𝑍 = (Cntz‘𝐺)
14863, 147cntzi 18242 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑍‘ran 𝐹) ∧ 𝑦 ∈ ran 𝐹) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
149146, 148sylan 572 . . . . . . . . . . . . . 14 (((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑥 ∈ ran 𝐹) ∧ 𝑦 ∈ ran 𝐹) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
150149anasss 459 . . . . . . . . . . . . 13 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
15161, 63mndass 17782 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
152140, 151sylan 572 . . . . . . . . . . . . 13 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
15369ad2antrr 714 . . . . . . . . . . . . 13 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝑀 ∈ (ℤ‘1))
1547ad2antrr 714 . . . . . . . . . . . . . 14 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝐹:𝐴𝐵)
155154frnd 6348 . . . . . . . . . . . . 13 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → ran 𝐹𝐵)
156 simprr 761 . . . . . . . . . . . . . . . . 17 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))
157 isof1o 6897 . . . . . . . . . . . . . . . . 17 (𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻) → 𝑓:(1...(♯‘ran 𝐻))–1-1-onto→ran 𝐻)
158156, 157syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝑓:(1...(♯‘ran 𝐻))–1-1-onto→ran 𝐻)
159138oveq2d 6990 . . . . . . . . . . . . . . . . 17 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (1...𝑀) = (1...(♯‘ran 𝐻)))
160159f1oeq2d 6437 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (𝑓:(1...𝑀)–1-1-onto→ran 𝐻𝑓:(1...(♯‘ran 𝐻))–1-1-onto→ran 𝐻))
161158, 160mpbird 249 . . . . . . . . . . . . . . 15 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝑓:(1...𝑀)–1-1-onto→ran 𝐻)
162 f1ocnv 6453 . . . . . . . . . . . . . . 15 (𝑓:(1...𝑀)–1-1-onto→ran 𝐻𝑓:ran 𝐻1-1-onto→(1...𝑀))
163161, 162syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝑓:ran 𝐻1-1-onto→(1...𝑀))
16415ad2antrr 714 . . . . . . . . . . . . . 14 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝐻:(1...𝑀)–1-1-onto→ran 𝐻)
165 f1oco 6463 . . . . . . . . . . . . . 14 ((𝑓:ran 𝐻1-1-onto→(1...𝑀) ∧ 𝐻:(1...𝑀)–1-1-onto→ran 𝐻) → (𝑓𝐻):(1...𝑀)–1-1-onto→(1...𝑀))
166163, 164, 165syl2anc 576 . . . . . . . . . . . . 13 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (𝑓𝐻):(1...𝑀)–1-1-onto→(1...𝑀))
167 ffn 6341 . . . . . . . . . . . . . . . . 17 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
168 dffn4 6422 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
169167, 168sylib 210 . . . . . . . . . . . . . . . 16 (𝐹:𝐴𝐵𝐹:𝐴onto→ran 𝐹)
170 fof 6416 . . . . . . . . . . . . . . . 16 (𝐹:𝐴onto→ran 𝐹𝐹:𝐴⟶ran 𝐹)
171154, 169, 1703syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝐹:𝐴⟶ran 𝐹)
172 f1of 6441 . . . . . . . . . . . . . . . . 17 (𝑓:(1...𝑀)–1-1-onto→ran 𝐻𝑓:(1...𝑀)⟶ran 𝐻)
173161, 172syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝑓:(1...𝑀)⟶ran 𝐻)
174109ad2antrr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → ran 𝐻𝐴)
175173, 174fssd 6355 . . . . . . . . . . . . . . 15 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝑓:(1...𝑀)⟶𝐴)
176 fco 6358 . . . . . . . . . . . . . . 15 ((𝐹:𝐴⟶ran 𝐹𝑓:(1...𝑀)⟶𝐴) → (𝐹𝑓):(1...𝑀)⟶ran 𝐹)
177171, 175, 176syl2anc 576 . . . . . . . . . . . . . 14 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (𝐹𝑓):(1...𝑀)⟶ran 𝐹)
178177ffvelrnda 6674 . . . . . . . . . . . . 13 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑥 ∈ (1...𝑀)) → ((𝐹𝑓)‘𝑥) ∈ ran 𝐹)
179 f1ococnv2 6467 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:(1...𝑀)–1-1-onto→ran 𝐻 → (𝑓𝑓) = ( I ↾ ran 𝐻))
180161, 179syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (𝑓𝑓) = ( I ↾ ran 𝐻))
181180coeq1d 5578 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → ((𝑓𝑓) ∘ 𝐻) = (( I ↾ ran 𝐻) ∘ 𝐻))
182 f1of 6441 . . . . . . . . . . . . . . . . . . . . 21 (𝐻:(1...𝑀)–1-1-onto→ran 𝐻𝐻:(1...𝑀)⟶ran 𝐻)
183 fcoi2 6379 . . . . . . . . . . . . . . . . . . . . 21 (𝐻:(1...𝑀)⟶ran 𝐻 → (( I ↾ ran 𝐻) ∘ 𝐻) = 𝐻)
184164, 182, 1833syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (( I ↾ ran 𝐻) ∘ 𝐻) = 𝐻)
185181, 184eqtr2d 2808 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝐻 = ((𝑓𝑓) ∘ 𝐻))
186 coass 5954 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑓) ∘ 𝐻) = (𝑓 ∘ (𝑓𝐻))
187185, 186syl6eq 2823 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝐻 = (𝑓 ∘ (𝑓𝐻)))
188187coeq2d 5579 . . . . . . . . . . . . . . . . 17 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (𝐹𝐻) = (𝐹 ∘ (𝑓 ∘ (𝑓𝐻))))
189 coass 5954 . . . . . . . . . . . . . . . . 17 ((𝐹𝑓) ∘ (𝑓𝐻)) = (𝐹 ∘ (𝑓 ∘ (𝑓𝐻)))
190188, 189syl6eqr 2825 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (𝐹𝐻) = ((𝐹𝑓) ∘ (𝑓𝐻)))
191190fveq1d 6498 . . . . . . . . . . . . . . 15 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → ((𝐹𝐻)‘𝑘) = (((𝐹𝑓) ∘ (𝑓𝐻))‘𝑘))
192191adantr 473 . . . . . . . . . . . . . 14 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝐻)‘𝑘) = (((𝐹𝑓) ∘ (𝑓𝐻))‘𝑘))
193 f1of 6441 . . . . . . . . . . . . . . . . 17 (𝑓:ran 𝐻1-1-onto→(1...𝑀) → 𝑓:ran 𝐻⟶(1...𝑀))
194161, 162, 1933syl 18 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝑓:ran 𝐻⟶(1...𝑀))
195164, 182syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝐻:(1...𝑀)⟶ran 𝐻)
196 fco 6358 . . . . . . . . . . . . . . . 16 ((𝑓:ran 𝐻⟶(1...𝑀) ∧ 𝐻:(1...𝑀)⟶ran 𝐻) → (𝑓𝐻):(1...𝑀)⟶(1...𝑀))
197194, 195, 196syl2anc 576 . . . . . . . . . . . . . . 15 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (𝑓𝐻):(1...𝑀)⟶(1...𝑀))
198 fvco3 6586 . . . . . . . . . . . . . . 15 (((𝑓𝐻):(1...𝑀)⟶(1...𝑀) ∧ 𝑘 ∈ (1...𝑀)) → (((𝐹𝑓) ∘ (𝑓𝐻))‘𝑘) = ((𝐹𝑓)‘((𝑓𝐻)‘𝑘)))
199197, 198sylan 572 . . . . . . . . . . . . . 14 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑘 ∈ (1...𝑀)) → (((𝐹𝑓) ∘ (𝑓𝐻))‘𝑘) = ((𝐹𝑓)‘((𝑓𝐻)‘𝑘)))
200192, 199eqtrd 2807 . . . . . . . . . . . . 13 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝐻)‘𝑘) = ((𝐹𝑓)‘((𝑓𝐻)‘𝑘)))
201143, 150, 152, 153, 155, 166, 178, 200seqf1o 13224 . . . . . . . . . . . 12 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (seq1( + , (𝐹𝐻))‘𝑀) = (seq1( + , (𝐹𝑓))‘𝑀))
20261, 63, 3mndlid 17791 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
203140, 202sylan 572 . . . . . . . . . . . . 13 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
20461, 63, 3mndrid 17792 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
205140, 204sylan 572 . . . . . . . . . . . . 13 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
206140, 62syl 17 . . . . . . . . . . . . 13 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 0𝐵)
207 fdm 6349 . . . . . . . . . . . . . . . . 17 (𝐻:(1...𝑀)⟶𝐴 → dom 𝐻 = (1...𝑀))
20810, 11, 2073syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐻 = (1...𝑀))
209 eluzfz1 12728 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (ℤ‘1) → 1 ∈ (1...𝑀))
210 ne0i 4180 . . . . . . . . . . . . . . . . 17 (1 ∈ (1...𝑀) → (1...𝑀) ≠ ∅)
21169, 209, 2103syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (1...𝑀) ≠ ∅)
212208, 211eqnetrd 3027 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐻 ≠ ∅)
213 dm0rn0 5637 . . . . . . . . . . . . . . . 16 (dom 𝐻 = ∅ ↔ ran 𝐻 = ∅)
214213necon3bii 3012 . . . . . . . . . . . . . . 15 (dom 𝐻 ≠ ∅ ↔ ran 𝐻 ≠ ∅)
215212, 214sylib 210 . . . . . . . . . . . . . 14 (𝜑 → ran 𝐻 ≠ ∅)
216215ad2antrr 714 . . . . . . . . . . . . 13 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → ran 𝐻 ≠ ∅)
217111adantrr 705 . . . . . . . . . . . . 13 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → ran 𝐻 ⊆ (𝑚...𝑛))
218 simprl 759 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝐴 = (𝑚...𝑛))
219218eleq2d 2844 . . . . . . . . . . . . . . 15 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (𝑥𝐴𝑥 ∈ (𝑚...𝑛)))
220219biimpar 470 . . . . . . . . . . . . . 14 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑥 ∈ (𝑚...𝑛)) → 𝑥𝐴)
221154ffvelrnda 6674 . . . . . . . . . . . . . 14 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
222220, 221syldan 583 . . . . . . . . . . . . 13 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑥 ∈ (𝑚...𝑛)) → (𝐹𝑥) ∈ 𝐵)
223218difeq1d 3981 . . . . . . . . . . . . . . . 16 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (𝐴 ∖ ran 𝐻) = ((𝑚...𝑛) ∖ ran 𝐻))
224223eleq2d 2844 . . . . . . . . . . . . . . 15 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (𝑥 ∈ (𝐴 ∖ ran 𝐻) ↔ 𝑥 ∈ ((𝑚...𝑛) ∖ ran 𝐻)))
225224biimpar 470 . . . . . . . . . . . . . 14 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑥 ∈ ((𝑚...𝑛) ∖ ran 𝐻)) → 𝑥 ∈ (𝐴 ∖ ran 𝐻))
22651ad4ant14 740 . . . . . . . . . . . . . 14 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝐻)) → (𝐹𝑥) = 0 )
227225, 226syldan 583 . . . . . . . . . . . . 13 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑥 ∈ ((𝑚...𝑛) ∖ ran 𝐻)) → (𝐹𝑥) = 0 )
228 f1of 6441 . . . . . . . . . . . . . . 15 (𝑓:(1...(♯‘ran 𝐻))–1-1-onto→ran 𝐻𝑓:(1...(♯‘ran 𝐻))⟶ran 𝐻)
229156, 157, 2283syl 18 . . . . . . . . . . . . . 14 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → 𝑓:(1...(♯‘ran 𝐻))⟶ran 𝐻)
230 fvco3 6586 . . . . . . . . . . . . . 14 ((𝑓:(1...(♯‘ran 𝐻))⟶ran 𝐻𝑦 ∈ (1...(♯‘ran 𝐻))) → ((𝐹𝑓)‘𝑦) = (𝐹‘(𝑓𝑦)))
231229, 230sylan 572 . . . . . . . . . . . . 13 ((((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) ∧ 𝑦 ∈ (1...(♯‘ran 𝐻))) → ((𝐹𝑓)‘𝑦) = (𝐹‘(𝑓𝑦)))
232203, 205, 143, 206, 156, 216, 217, 222, 227, 231seqcoll2 13634 . . . . . . . . . . . 12 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (seq𝑚( + , 𝐹)‘𝑛) = (seq1( + , (𝐹𝑓))‘(♯‘ran 𝐻)))
233139, 201, 2323eqtr4d 2817 . . . . . . . . . . 11 (((𝜑𝑊 ≠ ∅) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻))) → (seq1( + , (𝐹𝐻))‘𝑀) = (seq𝑚( + , 𝐹)‘𝑛))
234233expr 449 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → (𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻) → (seq1( + , (𝐹𝐻))‘𝑀) = (seq𝑚( + , 𝐹)‘𝑛)))
235234exlimdv 1893 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → (∃𝑓 𝑓 Isom < , < ((1...(♯‘ran 𝐻)), ran 𝐻) → (seq1( + , (𝐹𝐻))‘𝑀) = (seq𝑚( + , 𝐹)‘𝑛)))
236132, 235mpd 15 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → (seq1( + , (𝐹𝐻))‘𝑀) = (seq𝑚( + , 𝐹)‘𝑛))
237107, 236eqtr4d 2810 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ 𝐴 = (𝑚...𝑛)) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝐻))‘𝑀))
238237ex 405 . . . . . 6 ((𝜑𝑊 ≠ ∅) → (𝐴 = (𝑚...𝑛) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝐻))‘𝑀)))
239238rexlimdvw 3228 . . . . 5 ((𝜑𝑊 ≠ ∅) → (∃𝑛 ∈ ℤ 𝐴 = (𝑚...𝑛) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝐻))‘𝑀)))
240239rexlimdvw 3228 . . . 4 ((𝜑𝑊 ≠ ∅) → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝐴 = (𝑚...𝑛) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝐻))‘𝑀)))
24180, 240syl5bi 234 . . 3 ((𝜑𝑊 ≠ ∅) → (𝐴 ∈ ran ... → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝐻))‘𝑀)))
242 suppssdm 7644 . . . . . . . . . . 11 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
24332, 242eqsstri 3884 . . . . . . . . . 10 𝑊 ⊆ dom (𝐹𝐻)
244243, 30fssdm 6357 . . . . . . . . 9 (𝜑𝑊 ⊆ (1...𝑀))
245 fz1ssnn 12752 . . . . . . . . . 10 (1...𝑀) ⊆ ℕ
246 nnssre 11441 . . . . . . . . . 10 ℕ ⊆ ℝ
247245, 246sstri 3860 . . . . . . . . 9 (1...𝑀) ⊆ ℝ
248244, 247syl6ss 3863 . . . . . . . 8 (𝜑𝑊 ⊆ ℝ)
249 soss 5341 . . . . . . . 8 (𝑊 ⊆ ℝ → ( < Or ℝ → < Or 𝑊))
250248, 118, 249mpisyl 21 . . . . . . 7 (𝜑 → < Or 𝑊)
251 ssfi 8531 . . . . . . . 8 (((1...𝑀) ∈ Fin ∧ 𝑊 ⊆ (1...𝑀)) → 𝑊 ∈ Fin)
252121, 244, 251sylancr 579 . . . . . . 7 (𝜑𝑊 ∈ Fin)
253 fz1iso 13631 . . . . . . 7 (( < Or 𝑊𝑊 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))
254250, 252, 253syl2anc 576 . . . . . 6 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))
255254ad2antrr 714 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ ¬ 𝐴 ∈ ran ...) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))
25661, 3, 63, 147, 1, 2, 7, 144, 67, 10, 49, 32gsumval3lem2 18792 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)))
2571ad2antrr 714 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝐺 ∈ Mnd)
258257, 202sylan 572 . . . . . . . . 9 ((((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) ∧ 𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
259257, 204sylan 572 . . . . . . . . 9 ((((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) ∧ 𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
260257, 142sylan 572 . . . . . . . . 9 ((((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
261257, 62syl 17 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 0𝐵)
262 simprr 761 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))
263 simplr 757 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ≠ ∅)
264244ad2antrr 714 . . . . . . . . 9 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑊 ⊆ (1...𝑀))
26530ad2antrr 714 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐹𝐻):(1...𝑀)⟶𝐵)
266265ffvelrnda 6674 . . . . . . . . 9 ((((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) ∧ 𝑥 ∈ (1...𝑀)) → ((𝐹𝐻)‘𝑥) ∈ 𝐵)
26733a1i 11 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → ((𝐹𝐻) supp 0 ) ⊆ 𝑊)
268 ovexd 7008 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (1...𝑀) ∈ V)
26936a1i 11 . . . . . . . . . 10 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 0 ∈ V)
270265, 267, 268, 269suppssr 7662 . . . . . . . . 9 ((((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) ∧ 𝑥 ∈ ((1...𝑀) ∖ 𝑊)) → ((𝐹𝐻)‘𝑥) = 0 )
271 coass 5954 . . . . . . . . . . 11 ((𝐹𝐻) ∘ 𝑓) = (𝐹 ∘ (𝐻𝑓))
272271fveq1i 6497 . . . . . . . . . 10 (((𝐹𝐻) ∘ 𝑓)‘𝑦) = ((𝐹 ∘ (𝐻𝑓))‘𝑦)
273 isof1o 6897 . . . . . . . . . . . 12 (𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊) → 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)
274 f1of 6441 . . . . . . . . . . . 12 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑓:(1...(♯‘𝑊))⟶𝑊)
275262, 273, 2743syl 18 . . . . . . . . . . 11 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → 𝑓:(1...(♯‘𝑊))⟶𝑊)
276 fvco3 6586 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝑊))⟶𝑊𝑦 ∈ (1...(♯‘𝑊))) → (((𝐹𝐻) ∘ 𝑓)‘𝑦) = ((𝐹𝐻)‘(𝑓𝑦)))
277275, 276sylan 572 . . . . . . . . . 10 ((((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) ∧ 𝑦 ∈ (1...(♯‘𝑊))) → (((𝐹𝐻) ∘ 𝑓)‘𝑦) = ((𝐹𝐻)‘(𝑓𝑦)))
278272, 277syl5eqr 2821 . . . . . . . . 9 ((((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) ∧ 𝑦 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ (𝐻𝑓))‘𝑦) = ((𝐹𝐻)‘(𝑓𝑦)))
279258, 259, 260, 261, 262, 263, 264, 266, 270, 278seqcoll2 13634 . . . . . . . 8 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (seq1( + , (𝐹𝐻))‘𝑀) = (seq1( + , (𝐹 ∘ (𝐻𝑓)))‘(♯‘𝑊)))
280256, 279eqtr4d 2810 . . . . . . 7 (((𝜑𝑊 ≠ ∅) ∧ (¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊))) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝐻))‘𝑀))
281280expr 449 . . . . . 6 (((𝜑𝑊 ≠ ∅) ∧ ¬ 𝐴 ∈ ran ...) → (𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝐻))‘𝑀)))
282281exlimdv 1893 . . . . 5 (((𝜑𝑊 ≠ ∅) ∧ ¬ 𝐴 ∈ ran ...) → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑊)), 𝑊) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝐻))‘𝑀)))
283255, 282mpd 15 . . . 4 (((𝜑𝑊 ≠ ∅) ∧ ¬ 𝐴 ∈ ran ...) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝐻))‘𝑀))
284283ex 405 . . 3 ((𝜑𝑊 ≠ ∅) → (¬ 𝐴 ∈ ran ... → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝐻))‘𝑀)))
285241, 284pm2.61d 172 . 2 ((𝜑𝑊 ≠ ∅) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝐻))‘𝑀))
28676, 285pm2.61dane 3048 1 (𝜑 → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝐻))‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wex 1743  wcel 2051  wne 2960  wrex 3082  Vcvv 3408  cdif 3819  wss 3822  c0 4172  𝒫 cpw 4416  {csn 4435   class class class wbr 4925  cmpt 5004   I cid 5307   Or wor 5321   × cxp 5401  ccnv 5402  dom cdm 5403  ran crn 5404  cres 5405  ccom 5407  Rel wrel 5408   Fn wfn 6180  wf 6181  1-1wf1 6182  ontowfo 6183  1-1-ontowf1o 6184  cfv 6185   Isom wiso 6186  (class class class)co 6974   supp csupp 7631  cen 8301  Fincfn 8304  cr 10332  1c1 10334   < clt 10472  cn 11437  0cn0 11705  cz 11791  cuz 12056  ...cfz 12706  seqcseq 13182  chash 13503  Basecbs 16337  +gcplusg 16419  0gc0g 16567   Σg cgsu 16568  Mndcmnd 17774  Cntzccntz 18228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-supp 7632  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-oi 8767  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-n0 11706  df-z 11792  df-uz 12057  df-fz 12707  df-fzo 12848  df-seq 13183  df-hash 13504  df-0g 16569  df-gsum 16570  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-cntz 18230
This theorem is referenced by:  gsumzres  18795  gsumzcl2  18796  gsumzf1o  18798  gsumzaddlem  18806  gsumconst  18819  gsumzmhm  18822  gsumzoppg  18829  gsumfsum  20329  wilthlem3  25364
  Copyright terms: Public domain W3C validator