MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3 Structured version   Visualization version   GIF version

Theorem gsumval3 19769
Description: Value of the group sum operation over an arbitrary finite set. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐡 = (Baseβ€˜πΊ)
gsumval3.0 0 = (0gβ€˜πΊ)
gsumval3.p + = (+gβ€˜πΊ)
gsumval3.z 𝑍 = (Cntzβ€˜πΊ)
gsumval3.g (πœ‘ β†’ 𝐺 ∈ Mnd)
gsumval3.a (πœ‘ β†’ 𝐴 ∈ 𝑉)
gsumval3.f (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
gsumval3.c (πœ‘ β†’ ran 𝐹 βŠ† (π‘β€˜ran 𝐹))
gsumval3.m (πœ‘ β†’ 𝑀 ∈ β„•)
gsumval3.h (πœ‘ β†’ 𝐻:(1...𝑀)–1-1→𝐴)
gsumval3.n (πœ‘ β†’ (𝐹 supp 0 ) βŠ† ran 𝐻)
gsumval3.w π‘Š = ((𝐹 ∘ 𝐻) supp 0 )
Assertion
Ref Expression
gsumval3 (πœ‘ β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€))

Proof of Theorem gsumval3
Dummy variables 𝑓 π‘˜ π‘š 𝑛 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ Mnd)
2 gsumval3.a . . . . 5 (πœ‘ β†’ 𝐴 ∈ 𝑉)
3 gsumval3.0 . . . . . 6 0 = (0gβ€˜πΊ)
43gsumz 18713 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) β†’ (𝐺 Ξ£g (π‘₯ ∈ 𝐴 ↦ 0 )) = 0 )
51, 2, 4syl2anc 584 . . . 4 (πœ‘ β†’ (𝐺 Ξ£g (π‘₯ ∈ 𝐴 ↦ 0 )) = 0 )
65adantr 481 . . 3 ((πœ‘ ∧ π‘Š = βˆ…) β†’ (𝐺 Ξ£g (π‘₯ ∈ 𝐴 ↦ 0 )) = 0 )
7 gsumval3.f . . . . . . 7 (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
87feqmptd 6957 . . . . . 6 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐴 ↦ (πΉβ€˜π‘₯)))
98adantr 481 . . . . 5 ((πœ‘ ∧ π‘Š = βˆ…) β†’ 𝐹 = (π‘₯ ∈ 𝐴 ↦ (πΉβ€˜π‘₯)))
10 gsumval3.h . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐻:(1...𝑀)–1-1→𝐴)
11 f1f 6784 . . . . . . . . . . . . . 14 (𝐻:(1...𝑀)–1-1→𝐴 β†’ 𝐻:(1...𝑀)⟢𝐴)
1210, 11syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐻:(1...𝑀)⟢𝐴)
1312ad2antrr 724 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ ran 𝐻) β†’ 𝐻:(1...𝑀)⟢𝐴)
14 f1f1orn 6841 . . . . . . . . . . . . . . . 16 (𝐻:(1...𝑀)–1-1→𝐴 β†’ 𝐻:(1...𝑀)–1-1-ontoβ†’ran 𝐻)
1510, 14syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐻:(1...𝑀)–1-1-ontoβ†’ran 𝐻)
1615adantr 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘Š = βˆ…) β†’ 𝐻:(1...𝑀)–1-1-ontoβ†’ran 𝐻)
17 f1ocnv 6842 . . . . . . . . . . . . . 14 (𝐻:(1...𝑀)–1-1-ontoβ†’ran 𝐻 β†’ ◑𝐻:ran 𝐻–1-1-ontoβ†’(1...𝑀))
18 f1of 6830 . . . . . . . . . . . . . 14 (◑𝐻:ran 𝐻–1-1-ontoβ†’(1...𝑀) β†’ ◑𝐻:ran 𝐻⟢(1...𝑀))
1916, 17, 183syl 18 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘Š = βˆ…) β†’ ◑𝐻:ran 𝐻⟢(1...𝑀))
2019ffvelcdmda 7083 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ ran 𝐻) β†’ (β—‘π»β€˜π‘₯) ∈ (1...𝑀))
21 fvco3 6987 . . . . . . . . . . . 12 ((𝐻:(1...𝑀)⟢𝐴 ∧ (β—‘π»β€˜π‘₯) ∈ (1...𝑀)) β†’ ((𝐹 ∘ 𝐻)β€˜(β—‘π»β€˜π‘₯)) = (πΉβ€˜(π»β€˜(β—‘π»β€˜π‘₯))))
2213, 20, 21syl2anc 584 . . . . . . . . . . 11 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ ran 𝐻) β†’ ((𝐹 ∘ 𝐻)β€˜(β—‘π»β€˜π‘₯)) = (πΉβ€˜(π»β€˜(β—‘π»β€˜π‘₯))))
23 simpr 485 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘Š = βˆ…) β†’ π‘Š = βˆ…)
2423difeq2d 4121 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘Š = βˆ…) β†’ ((1...𝑀) βˆ– π‘Š) = ((1...𝑀) βˆ– βˆ…))
25 dif0 4371 . . . . . . . . . . . . . . 15 ((1...𝑀) βˆ– βˆ…) = (1...𝑀)
2624, 25eqtrdi 2788 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘Š = βˆ…) β†’ ((1...𝑀) βˆ– π‘Š) = (1...𝑀))
2726adantr 481 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ ran 𝐻) β†’ ((1...𝑀) βˆ– π‘Š) = (1...𝑀))
2820, 27eleqtrrd 2836 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ ran 𝐻) β†’ (β—‘π»β€˜π‘₯) ∈ ((1...𝑀) βˆ– π‘Š))
29 fco 6738 . . . . . . . . . . . . . . 15 ((𝐹:𝐴⟢𝐡 ∧ 𝐻:(1...𝑀)⟢𝐴) β†’ (𝐹 ∘ 𝐻):(1...𝑀)⟢𝐡)
307, 12, 29syl2anc 584 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝐹 ∘ 𝐻):(1...𝑀)⟢𝐡)
3130adantr 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘Š = βˆ…) β†’ (𝐹 ∘ 𝐻):(1...𝑀)⟢𝐡)
32 gsumval3.w . . . . . . . . . . . . . . 15 π‘Š = ((𝐹 ∘ 𝐻) supp 0 )
3332eqimss2i 4042 . . . . . . . . . . . . . 14 ((𝐹 ∘ 𝐻) supp 0 ) βŠ† π‘Š
3433a1i 11 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘Š = βˆ…) β†’ ((𝐹 ∘ 𝐻) supp 0 ) βŠ† π‘Š)
35 ovexd 7440 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘Š = βˆ…) β†’ (1...𝑀) ∈ V)
363fvexi 6902 . . . . . . . . . . . . . 14 0 ∈ V
3736a1i 11 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘Š = βˆ…) β†’ 0 ∈ V)
3831, 34, 35, 37suppssr 8177 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘Š = βˆ…) ∧ (β—‘π»β€˜π‘₯) ∈ ((1...𝑀) βˆ– π‘Š)) β†’ ((𝐹 ∘ 𝐻)β€˜(β—‘π»β€˜π‘₯)) = 0 )
3928, 38syldan 591 . . . . . . . . . . 11 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ ran 𝐻) β†’ ((𝐹 ∘ 𝐻)β€˜(β—‘π»β€˜π‘₯)) = 0 )
40 f1ocnvfv2 7271 . . . . . . . . . . . . 13 ((𝐻:(1...𝑀)–1-1-ontoβ†’ran 𝐻 ∧ π‘₯ ∈ ran 𝐻) β†’ (π»β€˜(β—‘π»β€˜π‘₯)) = π‘₯)
4116, 40sylan 580 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ ran 𝐻) β†’ (π»β€˜(β—‘π»β€˜π‘₯)) = π‘₯)
4241fveq2d 6892 . . . . . . . . . . 11 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ ran 𝐻) β†’ (πΉβ€˜(π»β€˜(β—‘π»β€˜π‘₯))) = (πΉβ€˜π‘₯))
4322, 39, 423eqtr3rd 2781 . . . . . . . . . 10 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ ran 𝐻) β†’ (πΉβ€˜π‘₯) = 0 )
44 fvex 6901 . . . . . . . . . . 11 (πΉβ€˜π‘₯) ∈ V
4544elsn 4642 . . . . . . . . . 10 ((πΉβ€˜π‘₯) ∈ { 0 } ↔ (πΉβ€˜π‘₯) = 0 )
4643, 45sylibr 233 . . . . . . . . 9 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ ran 𝐻) β†’ (πΉβ€˜π‘₯) ∈ { 0 })
4746adantlr 713 . . . . . . . 8 ((((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ 𝐴) ∧ π‘₯ ∈ ran 𝐻) β†’ (πΉβ€˜π‘₯) ∈ { 0 })
48 eldif 3957 . . . . . . . . . . 11 (π‘₯ ∈ (𝐴 βˆ– ran 𝐻) ↔ (π‘₯ ∈ 𝐴 ∧ Β¬ π‘₯ ∈ ran 𝐻))
49 gsumval3.n . . . . . . . . . . . . 13 (πœ‘ β†’ (𝐹 supp 0 ) βŠ† ran 𝐻)
5036a1i 11 . . . . . . . . . . . . 13 (πœ‘ β†’ 0 ∈ V)
517, 49, 2, 50suppssr 8177 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ (𝐴 βˆ– ran 𝐻)) β†’ (πΉβ€˜π‘₯) = 0 )
5251, 45sylibr 233 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ (𝐴 βˆ– ran 𝐻)) β†’ (πΉβ€˜π‘₯) ∈ { 0 })
5348, 52sylan2br 595 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ 𝐴 ∧ Β¬ π‘₯ ∈ ran 𝐻)) β†’ (πΉβ€˜π‘₯) ∈ { 0 })
5453adantlr 713 . . . . . . . . 9 (((πœ‘ ∧ π‘Š = βˆ…) ∧ (π‘₯ ∈ 𝐴 ∧ Β¬ π‘₯ ∈ ran 𝐻)) β†’ (πΉβ€˜π‘₯) ∈ { 0 })
5554anassrs 468 . . . . . . . 8 ((((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ 𝐴) ∧ Β¬ π‘₯ ∈ ran 𝐻) β†’ (πΉβ€˜π‘₯) ∈ { 0 })
5647, 55pm2.61dan 811 . . . . . . 7 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ 𝐴) β†’ (πΉβ€˜π‘₯) ∈ { 0 })
5756, 45sylib 217 . . . . . 6 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ 𝐴) β†’ (πΉβ€˜π‘₯) = 0 )
5857mpteq2dva 5247 . . . . 5 ((πœ‘ ∧ π‘Š = βˆ…) β†’ (π‘₯ ∈ 𝐴 ↦ (πΉβ€˜π‘₯)) = (π‘₯ ∈ 𝐴 ↦ 0 ))
599, 58eqtrd 2772 . . . 4 ((πœ‘ ∧ π‘Š = βˆ…) β†’ 𝐹 = (π‘₯ ∈ 𝐴 ↦ 0 ))
6059oveq2d 7421 . . 3 ((πœ‘ ∧ π‘Š = βˆ…) β†’ (𝐺 Ξ£g 𝐹) = (𝐺 Ξ£g (π‘₯ ∈ 𝐴 ↦ 0 )))
61 gsumval3.b . . . . . . 7 𝐡 = (Baseβ€˜πΊ)
6261, 3mndidcl 18636 . . . . . 6 (𝐺 ∈ Mnd β†’ 0 ∈ 𝐡)
63 gsumval3.p . . . . . . 7 + = (+gβ€˜πΊ)
6461, 63, 3mndlid 18641 . . . . . 6 ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐡) β†’ ( 0 + 0 ) = 0 )
651, 62, 64syl2anc2 585 . . . . 5 (πœ‘ β†’ ( 0 + 0 ) = 0 )
6665adantr 481 . . . 4 ((πœ‘ ∧ π‘Š = βˆ…) β†’ ( 0 + 0 ) = 0 )
67 gsumval3.m . . . . . 6 (πœ‘ β†’ 𝑀 ∈ β„•)
68 nnuz 12861 . . . . . 6 β„• = (β„€β‰₯β€˜1)
6967, 68eleqtrdi 2843 . . . . 5 (πœ‘ β†’ 𝑀 ∈ (β„€β‰₯β€˜1))
7069adantr 481 . . . 4 ((πœ‘ ∧ π‘Š = βˆ…) β†’ 𝑀 ∈ (β„€β‰₯β€˜1))
7126eleq2d 2819 . . . . . 6 ((πœ‘ ∧ π‘Š = βˆ…) β†’ (π‘₯ ∈ ((1...𝑀) βˆ– π‘Š) ↔ π‘₯ ∈ (1...𝑀)))
7271biimpar 478 . . . . 5 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ (1...𝑀)) β†’ π‘₯ ∈ ((1...𝑀) βˆ– π‘Š))
7331, 34, 35, 37suppssr 8177 . . . . 5 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ ((1...𝑀) βˆ– π‘Š)) β†’ ((𝐹 ∘ 𝐻)β€˜π‘₯) = 0 )
7472, 73syldan 591 . . . 4 (((πœ‘ ∧ π‘Š = βˆ…) ∧ π‘₯ ∈ (1...𝑀)) β†’ ((𝐹 ∘ 𝐻)β€˜π‘₯) = 0 )
7566, 70, 74seqid3 14008 . . 3 ((πœ‘ ∧ π‘Š = βˆ…) β†’ (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€) = 0 )
766, 60, 753eqtr4d 2782 . 2 ((πœ‘ ∧ π‘Š = βˆ…) β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€))
77 fzf 13484 . . . . 5 ...:(β„€ Γ— β„€)βŸΆπ’« β„€
78 ffn 6714 . . . . 5 (...:(β„€ Γ— β„€)βŸΆπ’« β„€ β†’ ... Fn (β„€ Γ— β„€))
79 ovelrn 7579 . . . . 5 (... Fn (β„€ Γ— β„€) β†’ (𝐴 ∈ ran ... ↔ βˆƒπ‘š ∈ β„€ βˆƒπ‘› ∈ β„€ 𝐴 = (π‘š...𝑛)))
8077, 78, 79mp2b 10 . . . 4 (𝐴 ∈ ran ... ↔ βˆƒπ‘š ∈ β„€ βˆƒπ‘› ∈ β„€ 𝐴 = (π‘š...𝑛))
811ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ 𝐺 ∈ Mnd)
82 simpr 485 . . . . . . . . . . 11 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ 𝐴 = (π‘š...𝑛))
83 frel 6719 . . . . . . . . . . . . . . . . 17 (𝐹:𝐴⟢𝐡 β†’ Rel 𝐹)
84 reldm0 5925 . . . . . . . . . . . . . . . . 17 (Rel 𝐹 β†’ (𝐹 = βˆ… ↔ dom 𝐹 = βˆ…))
857, 83, 843syl 18 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (𝐹 = βˆ… ↔ dom 𝐹 = βˆ…))
867fdmd 6725 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ dom 𝐹 = 𝐴)
8786eqeq1d 2734 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (dom 𝐹 = βˆ… ↔ 𝐴 = βˆ…))
8885, 87bitrd 278 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (𝐹 = βˆ… ↔ 𝐴 = βˆ…))
89 coeq1 5855 . . . . . . . . . . . . . . . . . . 19 (𝐹 = βˆ… β†’ (𝐹 ∘ 𝐻) = (βˆ… ∘ 𝐻))
90 co01 6257 . . . . . . . . . . . . . . . . . . 19 (βˆ… ∘ 𝐻) = βˆ…
9189, 90eqtrdi 2788 . . . . . . . . . . . . . . . . . 18 (𝐹 = βˆ… β†’ (𝐹 ∘ 𝐻) = βˆ…)
9291oveq1d 7420 . . . . . . . . . . . . . . . . 17 (𝐹 = βˆ… β†’ ((𝐹 ∘ 𝐻) supp 0 ) = (βˆ… supp 0 ))
93 supp0 8147 . . . . . . . . . . . . . . . . . 18 ( 0 ∈ V β†’ (βˆ… supp 0 ) = βˆ…)
9436, 93ax-mp 5 . . . . . . . . . . . . . . . . 17 (βˆ… supp 0 ) = βˆ…
9592, 94eqtrdi 2788 . . . . . . . . . . . . . . . 16 (𝐹 = βˆ… β†’ ((𝐹 ∘ 𝐻) supp 0 ) = βˆ…)
9632, 95eqtrid 2784 . . . . . . . . . . . . . . 15 (𝐹 = βˆ… β†’ π‘Š = βˆ…)
9788, 96syl6bir 253 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝐴 = βˆ… β†’ π‘Š = βˆ…))
9897necon3d 2961 . . . . . . . . . . . . 13 (πœ‘ β†’ (π‘Š β‰  βˆ… β†’ 𝐴 β‰  βˆ…))
9998imp 407 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘Š β‰  βˆ…) β†’ 𝐴 β‰  βˆ…)
10099adantr 481 . . . . . . . . . . 11 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ 𝐴 β‰  βˆ…)
10182, 100eqnetrrd 3009 . . . . . . . . . 10 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ (π‘š...𝑛) β‰  βˆ…)
102 fzn0 13511 . . . . . . . . . 10 ((π‘š...𝑛) β‰  βˆ… ↔ 𝑛 ∈ (β„€β‰₯β€˜π‘š))
103101, 102sylib 217 . . . . . . . . 9 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘š))
1047ad2antrr 724 . . . . . . . . . 10 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ 𝐹:𝐴⟢𝐡)
10582feq2d 6700 . . . . . . . . . 10 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ (𝐹:𝐴⟢𝐡 ↔ 𝐹:(π‘š...𝑛)⟢𝐡))
106104, 105mpbid 231 . . . . . . . . 9 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ 𝐹:(π‘š...𝑛)⟢𝐡)
10761, 63, 81, 103, 106gsumval2 18601 . . . . . . . 8 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ (𝐺 Ξ£g 𝐹) = (seqπ‘š( + , 𝐹)β€˜π‘›))
108 frn 6721 . . . . . . . . . . . . . . 15 (𝐻:(1...𝑀)⟢𝐴 β†’ ran 𝐻 βŠ† 𝐴)
10910, 11, 1083syl 18 . . . . . . . . . . . . . 14 (πœ‘ β†’ ran 𝐻 βŠ† 𝐴)
110109ad2antrr 724 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ ran 𝐻 βŠ† 𝐴)
111110, 82sseqtrd 4021 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ ran 𝐻 βŠ† (π‘š...𝑛))
112 fzssuz 13538 . . . . . . . . . . . . 13 (π‘š...𝑛) βŠ† (β„€β‰₯β€˜π‘š)
113 uzssz 12839 . . . . . . . . . . . . . 14 (β„€β‰₯β€˜π‘š) βŠ† β„€
114 zssre 12561 . . . . . . . . . . . . . 14 β„€ βŠ† ℝ
115113, 114sstri 3990 . . . . . . . . . . . . 13 (β„€β‰₯β€˜π‘š) βŠ† ℝ
116112, 115sstri 3990 . . . . . . . . . . . 12 (π‘š...𝑛) βŠ† ℝ
117111, 116sstrdi 3993 . . . . . . . . . . 11 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ ran 𝐻 βŠ† ℝ)
118 ltso 11290 . . . . . . . . . . 11 < Or ℝ
119 soss 5607 . . . . . . . . . . 11 (ran 𝐻 βŠ† ℝ β†’ ( < Or ℝ β†’ < Or ran 𝐻))
120117, 118, 119mpisyl 21 . . . . . . . . . 10 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ < Or ran 𝐻)
121 fzfi 13933 . . . . . . . . . . . 12 (1...𝑀) ∈ Fin
122121a1i 11 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (1...𝑀) ∈ Fin)
12312, 122fexd 7225 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐻 ∈ V)
124 f1oen3g 8958 . . . . . . . . . . . . . 14 ((𝐻 ∈ V ∧ 𝐻:(1...𝑀)–1-1-ontoβ†’ran 𝐻) β†’ (1...𝑀) β‰ˆ ran 𝐻)
125123, 15, 124syl2anc 584 . . . . . . . . . . . . 13 (πœ‘ β†’ (1...𝑀) β‰ˆ ran 𝐻)
126 enfi 9186 . . . . . . . . . . . . 13 ((1...𝑀) β‰ˆ ran 𝐻 β†’ ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
127125, 126syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ ((1...𝑀) ∈ Fin ↔ ran 𝐻 ∈ Fin))
128121, 127mpbii 232 . . . . . . . . . . 11 (πœ‘ β†’ ran 𝐻 ∈ Fin)
129128ad2antrr 724 . . . . . . . . . 10 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ ran 𝐻 ∈ Fin)
130 fz1iso 14419 . . . . . . . . . 10 (( < Or ran 𝐻 ∧ ran 𝐻 ∈ Fin) β†’ βˆƒπ‘“ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))
131120, 129, 130syl2anc 584 . . . . . . . . 9 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ βˆƒπ‘“ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))
13267nnnn0d 12528 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑀 ∈ β„•0)
133 hashfz1 14302 . . . . . . . . . . . . . . . 16 (𝑀 ∈ β„•0 β†’ (β™―β€˜(1...𝑀)) = 𝑀)
134132, 133syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (β™―β€˜(1...𝑀)) = 𝑀)
135122, 15hasheqf1od 14309 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (β™―β€˜(1...𝑀)) = (β™―β€˜ran 𝐻))
136134, 135eqtr3d 2774 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝑀 = (β™―β€˜ran 𝐻))
137136ad2antrr 724 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝑀 = (β™―β€˜ran 𝐻))
138137fveq2d 6892 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (seq1( + , (𝐹 ∘ 𝑓))β€˜π‘€) = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜ran 𝐻)))
1391ad2antrr 724 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝐺 ∈ Mnd)
14061, 63mndcl 18629 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Mnd ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯ + 𝑦) ∈ 𝐡)
1411403expb 1120 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯ + 𝑦) ∈ 𝐡)
142139, 141sylan 580 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯ + 𝑦) ∈ 𝐡)
143 gsumval3.c . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ ran 𝐹 βŠ† (π‘β€˜ran 𝐹))
144143ad2antrr 724 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ ran 𝐹 βŠ† (π‘β€˜ran 𝐹))
145144sselda 3981 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ π‘₯ ∈ ran 𝐹) β†’ π‘₯ ∈ (π‘β€˜ran 𝐹))
146 gsumval3.z . . . . . . . . . . . . . . . 16 𝑍 = (Cntzβ€˜πΊ)
14763, 146cntzi 19187 . . . . . . . . . . . . . . 15 ((π‘₯ ∈ (π‘β€˜ran 𝐹) ∧ 𝑦 ∈ ran 𝐹) β†’ (π‘₯ + 𝑦) = (𝑦 + π‘₯))
148145, 147sylan 580 . . . . . . . . . . . . . 14 (((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ π‘₯ ∈ ran 𝐹) ∧ 𝑦 ∈ ran 𝐹) β†’ (π‘₯ + 𝑦) = (𝑦 + π‘₯))
149148anasss 467 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ (π‘₯ ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹)) β†’ (π‘₯ + 𝑦) = (𝑦 + π‘₯))
15061, 63mndass 18630 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ ((π‘₯ + 𝑦) + 𝑧) = (π‘₯ + (𝑦 + 𝑧)))
151139, 150sylan 580 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ ((π‘₯ + 𝑦) + 𝑧) = (π‘₯ + (𝑦 + 𝑧)))
15269ad2antrr 724 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝑀 ∈ (β„€β‰₯β€˜1))
1537ad2antrr 724 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝐹:𝐴⟢𝐡)
154153frnd 6722 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ ran 𝐹 βŠ† 𝐡)
155 simprr 771 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))
156 isof1o 7316 . . . . . . . . . . . . . . . . 17 (𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻) β†’ 𝑓:(1...(β™―β€˜ran 𝐻))–1-1-ontoβ†’ran 𝐻)
157155, 156syl 17 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝑓:(1...(β™―β€˜ran 𝐻))–1-1-ontoβ†’ran 𝐻)
158137oveq2d 7421 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (1...𝑀) = (1...(β™―β€˜ran 𝐻)))
159158f1oeq2d 6826 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (𝑓:(1...𝑀)–1-1-ontoβ†’ran 𝐻 ↔ 𝑓:(1...(β™―β€˜ran 𝐻))–1-1-ontoβ†’ran 𝐻))
160157, 159mpbird 256 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝑓:(1...𝑀)–1-1-ontoβ†’ran 𝐻)
161 f1ocnv 6842 . . . . . . . . . . . . . . 15 (𝑓:(1...𝑀)–1-1-ontoβ†’ran 𝐻 β†’ ◑𝑓:ran 𝐻–1-1-ontoβ†’(1...𝑀))
162160, 161syl 17 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ ◑𝑓:ran 𝐻–1-1-ontoβ†’(1...𝑀))
16315ad2antrr 724 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝐻:(1...𝑀)–1-1-ontoβ†’ran 𝐻)
164 f1oco 6853 . . . . . . . . . . . . . 14 ((◑𝑓:ran 𝐻–1-1-ontoβ†’(1...𝑀) ∧ 𝐻:(1...𝑀)–1-1-ontoβ†’ran 𝐻) β†’ (◑𝑓 ∘ 𝐻):(1...𝑀)–1-1-ontoβ†’(1...𝑀))
165162, 163, 164syl2anc 584 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (◑𝑓 ∘ 𝐻):(1...𝑀)–1-1-ontoβ†’(1...𝑀))
166 ffn 6714 . . . . . . . . . . . . . . . . 17 (𝐹:𝐴⟢𝐡 β†’ 𝐹 Fn 𝐴)
167 dffn4 6808 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–ontoβ†’ran 𝐹)
168166, 167sylib 217 . . . . . . . . . . . . . . . 16 (𝐹:𝐴⟢𝐡 β†’ 𝐹:𝐴–ontoβ†’ran 𝐹)
169 fof 6802 . . . . . . . . . . . . . . . 16 (𝐹:𝐴–ontoβ†’ran 𝐹 β†’ 𝐹:𝐴⟢ran 𝐹)
170153, 168, 1693syl 18 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝐹:𝐴⟢ran 𝐹)
171 f1of 6830 . . . . . . . . . . . . . . . . 17 (𝑓:(1...𝑀)–1-1-ontoβ†’ran 𝐻 β†’ 𝑓:(1...𝑀)⟢ran 𝐻)
172160, 171syl 17 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝑓:(1...𝑀)⟢ran 𝐻)
173109ad2antrr 724 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ ran 𝐻 βŠ† 𝐴)
174172, 173fssd 6732 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝑓:(1...𝑀)⟢𝐴)
175 fco 6738 . . . . . . . . . . . . . . 15 ((𝐹:𝐴⟢ran 𝐹 ∧ 𝑓:(1...𝑀)⟢𝐴) β†’ (𝐹 ∘ 𝑓):(1...𝑀)⟢ran 𝐹)
176170, 174, 175syl2anc 584 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (𝐹 ∘ 𝑓):(1...𝑀)⟢ran 𝐹)
177176ffvelcdmda 7083 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ π‘₯ ∈ (1...𝑀)) β†’ ((𝐹 ∘ 𝑓)β€˜π‘₯) ∈ ran 𝐹)
178 f1ococnv2 6857 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:(1...𝑀)–1-1-ontoβ†’ran 𝐻 β†’ (𝑓 ∘ ◑𝑓) = ( I β†Ύ ran 𝐻))
179160, 178syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (𝑓 ∘ ◑𝑓) = ( I β†Ύ ran 𝐻))
180179coeq1d 5859 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ ((𝑓 ∘ ◑𝑓) ∘ 𝐻) = (( I β†Ύ ran 𝐻) ∘ 𝐻))
181 f1of 6830 . . . . . . . . . . . . . . . . . . . . 21 (𝐻:(1...𝑀)–1-1-ontoβ†’ran 𝐻 β†’ 𝐻:(1...𝑀)⟢ran 𝐻)
182 fcoi2 6763 . . . . . . . . . . . . . . . . . . . . 21 (𝐻:(1...𝑀)⟢ran 𝐻 β†’ (( I β†Ύ ran 𝐻) ∘ 𝐻) = 𝐻)
183163, 181, 1823syl 18 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (( I β†Ύ ran 𝐻) ∘ 𝐻) = 𝐻)
184180, 183eqtr2d 2773 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝐻 = ((𝑓 ∘ ◑𝑓) ∘ 𝐻))
185 coass 6261 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∘ ◑𝑓) ∘ 𝐻) = (𝑓 ∘ (◑𝑓 ∘ 𝐻))
186184, 185eqtrdi 2788 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝐻 = (𝑓 ∘ (◑𝑓 ∘ 𝐻)))
187186coeq2d 5860 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (𝐹 ∘ 𝐻) = (𝐹 ∘ (𝑓 ∘ (◑𝑓 ∘ 𝐻))))
188 coass 6261 . . . . . . . . . . . . . . . . 17 ((𝐹 ∘ 𝑓) ∘ (◑𝑓 ∘ 𝐻)) = (𝐹 ∘ (𝑓 ∘ (◑𝑓 ∘ 𝐻)))
189187, 188eqtr4di 2790 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (𝐹 ∘ 𝐻) = ((𝐹 ∘ 𝑓) ∘ (◑𝑓 ∘ 𝐻)))
190189fveq1d 6890 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ ((𝐹 ∘ 𝐻)β€˜π‘˜) = (((𝐹 ∘ 𝑓) ∘ (◑𝑓 ∘ 𝐻))β€˜π‘˜))
191190adantr 481 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ π‘˜ ∈ (1...𝑀)) β†’ ((𝐹 ∘ 𝐻)β€˜π‘˜) = (((𝐹 ∘ 𝑓) ∘ (◑𝑓 ∘ 𝐻))β€˜π‘˜))
192 f1of 6830 . . . . . . . . . . . . . . . . 17 (◑𝑓:ran 𝐻–1-1-ontoβ†’(1...𝑀) β†’ ◑𝑓:ran 𝐻⟢(1...𝑀))
193160, 161, 1923syl 18 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ ◑𝑓:ran 𝐻⟢(1...𝑀))
194163, 181syl 17 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝐻:(1...𝑀)⟢ran 𝐻)
195 fco 6738 . . . . . . . . . . . . . . . 16 ((◑𝑓:ran 𝐻⟢(1...𝑀) ∧ 𝐻:(1...𝑀)⟢ran 𝐻) β†’ (◑𝑓 ∘ 𝐻):(1...𝑀)⟢(1...𝑀))
196193, 194, 195syl2anc 584 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (◑𝑓 ∘ 𝐻):(1...𝑀)⟢(1...𝑀))
197 fvco3 6987 . . . . . . . . . . . . . . 15 (((◑𝑓 ∘ 𝐻):(1...𝑀)⟢(1...𝑀) ∧ π‘˜ ∈ (1...𝑀)) β†’ (((𝐹 ∘ 𝑓) ∘ (◑𝑓 ∘ 𝐻))β€˜π‘˜) = ((𝐹 ∘ 𝑓)β€˜((◑𝑓 ∘ 𝐻)β€˜π‘˜)))
198196, 197sylan 580 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ π‘˜ ∈ (1...𝑀)) β†’ (((𝐹 ∘ 𝑓) ∘ (◑𝑓 ∘ 𝐻))β€˜π‘˜) = ((𝐹 ∘ 𝑓)β€˜((◑𝑓 ∘ 𝐻)β€˜π‘˜)))
199191, 198eqtrd 2772 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ π‘˜ ∈ (1...𝑀)) β†’ ((𝐹 ∘ 𝐻)β€˜π‘˜) = ((𝐹 ∘ 𝑓)β€˜((◑𝑓 ∘ 𝐻)β€˜π‘˜)))
200142, 149, 151, 152, 154, 165, 177, 199seqf1o 14005 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€) = (seq1( + , (𝐹 ∘ 𝑓))β€˜π‘€))
20161, 63, 3mndlid 18641 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ π‘₯ ∈ 𝐡) β†’ ( 0 + π‘₯) = π‘₯)
202139, 201sylan 580 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ π‘₯ ∈ 𝐡) β†’ ( 0 + π‘₯) = π‘₯)
20361, 63, 3mndrid 18642 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ π‘₯ ∈ 𝐡) β†’ (π‘₯ + 0 ) = π‘₯)
204139, 203sylan 580 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ π‘₯ ∈ 𝐡) β†’ (π‘₯ + 0 ) = π‘₯)
205139, 62syl 17 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 0 ∈ 𝐡)
206 fdm 6723 . . . . . . . . . . . . . . . . 17 (𝐻:(1...𝑀)⟢𝐴 β†’ dom 𝐻 = (1...𝑀))
20710, 11, 2063syl 18 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ dom 𝐻 = (1...𝑀))
208 eluzfz1 13504 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (β„€β‰₯β€˜1) β†’ 1 ∈ (1...𝑀))
209 ne0i 4333 . . . . . . . . . . . . . . . . 17 (1 ∈ (1...𝑀) β†’ (1...𝑀) β‰  βˆ…)
21069, 208, 2093syl 18 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (1...𝑀) β‰  βˆ…)
211207, 210eqnetrd 3008 . . . . . . . . . . . . . . 15 (πœ‘ β†’ dom 𝐻 β‰  βˆ…)
212 dm0rn0 5922 . . . . . . . . . . . . . . . 16 (dom 𝐻 = βˆ… ↔ ran 𝐻 = βˆ…)
213212necon3bii 2993 . . . . . . . . . . . . . . 15 (dom 𝐻 β‰  βˆ… ↔ ran 𝐻 β‰  βˆ…)
214211, 213sylib 217 . . . . . . . . . . . . . 14 (πœ‘ β†’ ran 𝐻 β‰  βˆ…)
215214ad2antrr 724 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ ran 𝐻 β‰  βˆ…)
216111adantrr 715 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ ran 𝐻 βŠ† (π‘š...𝑛))
217 simprl 769 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝐴 = (π‘š...𝑛))
218217eleq2d 2819 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (π‘₯ ∈ 𝐴 ↔ π‘₯ ∈ (π‘š...𝑛)))
219218biimpar 478 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ π‘₯ ∈ (π‘š...𝑛)) β†’ π‘₯ ∈ 𝐴)
220153ffvelcdmda 7083 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ π‘₯ ∈ 𝐴) β†’ (πΉβ€˜π‘₯) ∈ 𝐡)
221219, 220syldan 591 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ π‘₯ ∈ (π‘š...𝑛)) β†’ (πΉβ€˜π‘₯) ∈ 𝐡)
222217difeq1d 4120 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (𝐴 βˆ– ran 𝐻) = ((π‘š...𝑛) βˆ– ran 𝐻))
223222eleq2d 2819 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (π‘₯ ∈ (𝐴 βˆ– ran 𝐻) ↔ π‘₯ ∈ ((π‘š...𝑛) βˆ– ran 𝐻)))
224223biimpar 478 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ π‘₯ ∈ ((π‘š...𝑛) βˆ– ran 𝐻)) β†’ π‘₯ ∈ (𝐴 βˆ– ran 𝐻))
22551ad4ant14 750 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ π‘₯ ∈ (𝐴 βˆ– ran 𝐻)) β†’ (πΉβ€˜π‘₯) = 0 )
226224, 225syldan 591 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ π‘₯ ∈ ((π‘š...𝑛) βˆ– ran 𝐻)) β†’ (πΉβ€˜π‘₯) = 0 )
227 f1of 6830 . . . . . . . . . . . . . . 15 (𝑓:(1...(β™―β€˜ran 𝐻))–1-1-ontoβ†’ran 𝐻 β†’ 𝑓:(1...(β™―β€˜ran 𝐻))⟢ran 𝐻)
228155, 156, 2273syl 18 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ 𝑓:(1...(β™―β€˜ran 𝐻))⟢ran 𝐻)
229 fvco3 6987 . . . . . . . . . . . . . 14 ((𝑓:(1...(β™―β€˜ran 𝐻))⟢ran 𝐻 ∧ 𝑦 ∈ (1...(β™―β€˜ran 𝐻))) β†’ ((𝐹 ∘ 𝑓)β€˜π‘¦) = (πΉβ€˜(π‘“β€˜π‘¦)))
230228, 229sylan 580 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) ∧ 𝑦 ∈ (1...(β™―β€˜ran 𝐻))) β†’ ((𝐹 ∘ 𝑓)β€˜π‘¦) = (πΉβ€˜(π‘“β€˜π‘¦)))
231202, 204, 142, 205, 155, 215, 216, 221, 226, 230seqcoll2 14422 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (seqπ‘š( + , 𝐹)β€˜π‘›) = (seq1( + , (𝐹 ∘ 𝑓))β€˜(β™―β€˜ran 𝐻)))
232138, 200, 2313eqtr4d 2782 . . . . . . . . . . 11 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (𝐴 = (π‘š...𝑛) ∧ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻))) β†’ (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€) = (seqπ‘š( + , 𝐹)β€˜π‘›))
233232expr 457 . . . . . . . . . 10 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ (𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻) β†’ (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€) = (seqπ‘š( + , 𝐹)β€˜π‘›)))
234233exlimdv 1936 . . . . . . . . 9 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ (βˆƒπ‘“ 𝑓 Isom < , < ((1...(β™―β€˜ran 𝐻)), ran 𝐻) β†’ (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€) = (seqπ‘š( + , 𝐹)β€˜π‘›)))
235131, 234mpd 15 . . . . . . . 8 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€) = (seqπ‘š( + , 𝐹)β€˜π‘›))
236107, 235eqtr4d 2775 . . . . . . 7 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ 𝐴 = (π‘š...𝑛)) β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€))
237236ex 413 . . . . . 6 ((πœ‘ ∧ π‘Š β‰  βˆ…) β†’ (𝐴 = (π‘š...𝑛) β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€)))
238237rexlimdvw 3160 . . . . 5 ((πœ‘ ∧ π‘Š β‰  βˆ…) β†’ (βˆƒπ‘› ∈ β„€ 𝐴 = (π‘š...𝑛) β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€)))
239238rexlimdvw 3160 . . . 4 ((πœ‘ ∧ π‘Š β‰  βˆ…) β†’ (βˆƒπ‘š ∈ β„€ βˆƒπ‘› ∈ β„€ 𝐴 = (π‘š...𝑛) β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€)))
24080, 239biimtrid 241 . . 3 ((πœ‘ ∧ π‘Š β‰  βˆ…) β†’ (𝐴 ∈ ran ... β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€)))
241 suppssdm 8158 . . . . . . . . . . 11 ((𝐹 ∘ 𝐻) supp 0 ) βŠ† dom (𝐹 ∘ 𝐻)
24232, 241eqsstri 4015 . . . . . . . . . 10 π‘Š βŠ† dom (𝐹 ∘ 𝐻)
243242, 30fssdm 6734 . . . . . . . . 9 (πœ‘ β†’ π‘Š βŠ† (1...𝑀))
244 fz1ssnn 13528 . . . . . . . . . 10 (1...𝑀) βŠ† β„•
245 nnssre 12212 . . . . . . . . . 10 β„• βŠ† ℝ
246244, 245sstri 3990 . . . . . . . . 9 (1...𝑀) βŠ† ℝ
247243, 246sstrdi 3993 . . . . . . . 8 (πœ‘ β†’ π‘Š βŠ† ℝ)
248 soss 5607 . . . . . . . 8 (π‘Š βŠ† ℝ β†’ ( < Or ℝ β†’ < Or π‘Š))
249247, 118, 248mpisyl 21 . . . . . . 7 (πœ‘ β†’ < Or π‘Š)
250 ssfi 9169 . . . . . . . 8 (((1...𝑀) ∈ Fin ∧ π‘Š βŠ† (1...𝑀)) β†’ π‘Š ∈ Fin)
251121, 243, 250sylancr 587 . . . . . . 7 (πœ‘ β†’ π‘Š ∈ Fin)
252 fz1iso 14419 . . . . . . 7 (( < Or π‘Š ∧ π‘Š ∈ Fin) β†’ βˆƒπ‘“ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))
253249, 251, 252syl2anc 584 . . . . . 6 (πœ‘ β†’ βˆƒπ‘“ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))
254253ad2antrr 724 . . . . 5 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ Β¬ 𝐴 ∈ ran ...) β†’ βˆƒπ‘“ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))
25561, 3, 63, 146, 1, 2, 7, 143, 67, 10, 49, 32gsumval3lem2 19768 . . . . . . . 8 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))β€˜(β™―β€˜π‘Š)))
2561ad2antrr 724 . . . . . . . . . 10 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) β†’ 𝐺 ∈ Mnd)
257256, 201sylan 580 . . . . . . . . 9 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) ∧ π‘₯ ∈ 𝐡) β†’ ( 0 + π‘₯) = π‘₯)
258256, 203sylan 580 . . . . . . . . 9 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) ∧ π‘₯ ∈ 𝐡) β†’ (π‘₯ + 0 ) = π‘₯)
259256, 141sylan 580 . . . . . . . . 9 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯ + 𝑦) ∈ 𝐡)
260256, 62syl 17 . . . . . . . . 9 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) β†’ 0 ∈ 𝐡)
261 simprr 771 . . . . . . . . 9 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) β†’ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))
262 simplr 767 . . . . . . . . 9 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) β†’ π‘Š β‰  βˆ…)
263243ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) β†’ π‘Š βŠ† (1...𝑀))
26430ad2antrr 724 . . . . . . . . . 10 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) β†’ (𝐹 ∘ 𝐻):(1...𝑀)⟢𝐡)
265264ffvelcdmda 7083 . . . . . . . . 9 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) ∧ π‘₯ ∈ (1...𝑀)) β†’ ((𝐹 ∘ 𝐻)β€˜π‘₯) ∈ 𝐡)
26633a1i 11 . . . . . . . . . 10 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) β†’ ((𝐹 ∘ 𝐻) supp 0 ) βŠ† π‘Š)
267 ovexd 7440 . . . . . . . . . 10 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) β†’ (1...𝑀) ∈ V)
26836a1i 11 . . . . . . . . . 10 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) β†’ 0 ∈ V)
269264, 266, 267, 268suppssr 8177 . . . . . . . . 9 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) ∧ π‘₯ ∈ ((1...𝑀) βˆ– π‘Š)) β†’ ((𝐹 ∘ 𝐻)β€˜π‘₯) = 0 )
270 coass 6261 . . . . . . . . . . 11 ((𝐹 ∘ 𝐻) ∘ 𝑓) = (𝐹 ∘ (𝐻 ∘ 𝑓))
271270fveq1i 6889 . . . . . . . . . 10 (((𝐹 ∘ 𝐻) ∘ 𝑓)β€˜π‘¦) = ((𝐹 ∘ (𝐻 ∘ 𝑓))β€˜π‘¦)
272 isof1o 7316 . . . . . . . . . . . 12 (𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š) β†’ 𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š)
273 f1of 6830 . . . . . . . . . . . 12 (𝑓:(1...(β™―β€˜π‘Š))–1-1-ontoβ†’π‘Š β†’ 𝑓:(1...(β™―β€˜π‘Š))βŸΆπ‘Š)
274261, 272, 2733syl 18 . . . . . . . . . . 11 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) β†’ 𝑓:(1...(β™―β€˜π‘Š))βŸΆπ‘Š)
275 fvco3 6987 . . . . . . . . . . 11 ((𝑓:(1...(β™―β€˜π‘Š))βŸΆπ‘Š ∧ 𝑦 ∈ (1...(β™―β€˜π‘Š))) β†’ (((𝐹 ∘ 𝐻) ∘ 𝑓)β€˜π‘¦) = ((𝐹 ∘ 𝐻)β€˜(π‘“β€˜π‘¦)))
276274, 275sylan 580 . . . . . . . . . 10 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) ∧ 𝑦 ∈ (1...(β™―β€˜π‘Š))) β†’ (((𝐹 ∘ 𝐻) ∘ 𝑓)β€˜π‘¦) = ((𝐹 ∘ 𝐻)β€˜(π‘“β€˜π‘¦)))
277271, 276eqtr3id 2786 . . . . . . . . 9 ((((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) ∧ 𝑦 ∈ (1...(β™―β€˜π‘Š))) β†’ ((𝐹 ∘ (𝐻 ∘ 𝑓))β€˜π‘¦) = ((𝐹 ∘ 𝐻)β€˜(π‘“β€˜π‘¦)))
278257, 258, 259, 260, 261, 262, 263, 265, 269, 277seqcoll2 14422 . . . . . . . 8 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) β†’ (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€) = (seq1( + , (𝐹 ∘ (𝐻 ∘ 𝑓)))β€˜(β™―β€˜π‘Š)))
279255, 278eqtr4d 2775 . . . . . . 7 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ (Β¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š))) β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€))
280279expr 457 . . . . . 6 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ Β¬ 𝐴 ∈ ran ...) β†’ (𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š) β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€)))
281280exlimdv 1936 . . . . 5 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ Β¬ 𝐴 ∈ ran ...) β†’ (βˆƒπ‘“ 𝑓 Isom < , < ((1...(β™―β€˜π‘Š)), π‘Š) β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€)))
282254, 281mpd 15 . . . 4 (((πœ‘ ∧ π‘Š β‰  βˆ…) ∧ Β¬ 𝐴 ∈ ran ...) β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€))
283282ex 413 . . 3 ((πœ‘ ∧ π‘Š β‰  βˆ…) β†’ (Β¬ 𝐴 ∈ ran ... β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€)))
284240, 283pm2.61d 179 . 2 ((πœ‘ ∧ π‘Š β‰  βˆ…) β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€))
28576, 284pm2.61dane 3029 1 (πœ‘ β†’ (𝐺 Ξ£g 𝐹) = (seq1( + , (𝐹 ∘ 𝐻))β€˜π‘€))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070  Vcvv 3474   βˆ– cdif 3944   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  {csn 4627   class class class wbr 5147   ↦ cmpt 5230   I cid 5572   Or wor 5586   Γ— cxp 5673  β—‘ccnv 5674  dom cdm 5675  ran crn 5676   β†Ύ cres 5677   ∘ ccom 5679  Rel wrel 5680   Fn wfn 6535  βŸΆwf 6536  β€“1-1β†’wf1 6537  β€“ontoβ†’wfo 6538  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540   Isom wiso 6541  (class class class)co 7405   supp csupp 8142   β‰ˆ cen 8932  Fincfn 8935  β„cr 11105  1c1 11107   < clt 11244  β„•cn 12208  β„•0cn0 12468  β„€cz 12554  β„€β‰₯cuz 12818  ...cfz 13480  seqcseq 13962  β™―chash 14286  Basecbs 17140  +gcplusg 17193  0gc0g 17381   Ξ£g cgsu 17382  Mndcmnd 18621  Cntzccntz 19173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-0g 17383  df-gsum 17384  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-cntz 19175
This theorem is referenced by:  gsumzres  19771  gsumzcl2  19772  gsumzf1o  19774  gsumzaddlem  19783  gsumconst  19796  gsumzmhm  19799  gsumzoppg  19806  gsumfsum  21004  wilthlem3  26563
  Copyright terms: Public domain W3C validator