Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-he | Structured version Visualization version GIF version |
Description: The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.) |
Ref | Expression |
---|---|
df-he | ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | whe 41269 | . 2 wff 𝑅 hereditary 𝐴 |
4 | 2, 1 | cima 5583 | . . 3 class (𝑅 “ 𝐴) |
5 | 4, 1 | wss 3883 | . 2 wff (𝑅 “ 𝐴) ⊆ 𝐴 |
6 | 3, 5 | wb 205 | 1 wff (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) |
Colors of variables: wff setvar class |
This definition is referenced by: dfhe2 41271 dfhe3 41272 heeq12 41273 sbcheg 41276 hess 41277 xphe 41278 0he 41279 he0 41281 unhe1 41282 snhesn 41283 dffrege76 41436 |
Copyright terms: Public domain | W3C validator |