Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xphe Structured version   Visualization version   GIF version

Theorem xphe 39031
Description: Any Cartesian product is hereditary in its second class. (Contributed by RP, 27-Mar-2020.) (Proof shortened by OpenAI, 3-Jul-2020.)
Assertion
Ref Expression
xphe (𝐴 × 𝐵) hereditary 𝐵

Proof of Theorem xphe
StepHypRef Expression
1 imassrn 5731 . . 3 ((𝐴 × 𝐵) “ 𝐵) ⊆ ran (𝐴 × 𝐵)
2 rnxpss 5820 . . 3 ran (𝐴 × 𝐵) ⊆ 𝐵
31, 2sstri 3830 . 2 ((𝐴 × 𝐵) “ 𝐵) ⊆ 𝐵
4 df-he 39023 . 2 ((𝐴 × 𝐵) hereditary 𝐵 ↔ ((𝐴 × 𝐵) “ 𝐵) ⊆ 𝐵)
53, 4mpbir 223 1 (𝐴 × 𝐵) hereditary 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3792   × cxp 5353  ran crn 5356  cima 5358   hereditary whe 39022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4887  df-opab 4949  df-xp 5361  df-rel 5362  df-cnv 5363  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-he 39023
This theorem is referenced by:  0heALT  39033
  Copyright terms: Public domain W3C validator