| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xphe | Structured version Visualization version GIF version | ||
| Description: Any Cartesian product is hereditary in its second class. (Contributed by RP, 27-Mar-2020.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| Ref | Expression |
|---|---|
| xphe | ⊢ (𝐴 × 𝐵) hereditary 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6026 | . . 3 ⊢ ((𝐴 × 𝐵) “ 𝐵) ⊆ ran (𝐴 × 𝐵) | |
| 2 | rnxpss 6125 | . . 3 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
| 3 | 1, 2 | sstri 3947 | . 2 ⊢ ((𝐴 × 𝐵) “ 𝐵) ⊆ 𝐵 |
| 4 | df-he 43749 | . 2 ⊢ ((𝐴 × 𝐵) hereditary 𝐵 ↔ ((𝐴 × 𝐵) “ 𝐵) ⊆ 𝐵) | |
| 5 | 3, 4 | mpbir 231 | 1 ⊢ (𝐴 × 𝐵) hereditary 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3905 × cxp 5621 ran crn 5624 “ cima 5626 hereditary whe 43748 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-he 43749 |
| This theorem is referenced by: 0heALT 43759 |
| Copyright terms: Public domain | W3C validator |