Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xphe | Structured version Visualization version GIF version |
Description: Any Cartesian product is hereditary in its second class. (Contributed by RP, 27-Mar-2020.) (Proof shortened by OpenAI, 3-Jul-2020.) |
Ref | Expression |
---|---|
xphe | ⊢ (𝐴 × 𝐵) hereditary 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5982 | . . 3 ⊢ ((𝐴 × 𝐵) “ 𝐵) ⊆ ran (𝐴 × 𝐵) | |
2 | rnxpss 6077 | . . 3 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
3 | 1, 2 | sstri 3931 | . 2 ⊢ ((𝐴 × 𝐵) “ 𝐵) ⊆ 𝐵 |
4 | df-he 41351 | . 2 ⊢ ((𝐴 × 𝐵) hereditary 𝐵 ↔ ((𝐴 × 𝐵) “ 𝐵) ⊆ 𝐵) | |
5 | 3, 4 | mpbir 230 | 1 ⊢ (𝐴 × 𝐵) hereditary 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3888 × cxp 5589 ran crn 5592 “ cima 5594 hereditary whe 41350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pr 5354 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-br 5077 df-opab 5139 df-xp 5597 df-rel 5598 df-cnv 5599 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-he 41351 |
This theorem is referenced by: 0heALT 41361 |
Copyright terms: Public domain | W3C validator |