Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xphe Structured version   Visualization version   GIF version

Theorem xphe 43752
Description: Any Cartesian product is hereditary in its second class. (Contributed by RP, 27-Mar-2020.) (Proof shortened by OpenAI, 3-Jul-2020.)
Assertion
Ref Expression
xphe (𝐴 × 𝐵) hereditary 𝐵

Proof of Theorem xphe
StepHypRef Expression
1 imassrn 6058 . . 3 ((𝐴 × 𝐵) “ 𝐵) ⊆ ran (𝐴 × 𝐵)
2 rnxpss 6161 . . 3 ran (𝐴 × 𝐵) ⊆ 𝐵
31, 2sstri 3968 . 2 ((𝐴 × 𝐵) “ 𝐵) ⊆ 𝐵
4 df-he 43744 . 2 ((𝐴 × 𝐵) hereditary 𝐵 ↔ ((𝐴 × 𝐵) “ 𝐵) ⊆ 𝐵)
53, 4mpbir 231 1 (𝐴 × 𝐵) hereditary 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3926   × cxp 5652  ran crn 5655  cima 5657   hereditary whe 43743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-he 43744
This theorem is referenced by:  0heALT  43754
  Copyright terms: Public domain W3C validator