| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > heeq12 | Structured version Visualization version GIF version | ||
| Description: Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| heeq12 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → 𝑅 = 𝑆) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
| 3 | 1, 2 | imaeq12d 6005 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 “ 𝐴) = (𝑆 “ 𝐵)) |
| 4 | 3, 2 | sseq12d 3963 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → ((𝑅 “ 𝐴) ⊆ 𝐴 ↔ (𝑆 “ 𝐵) ⊆ 𝐵)) |
| 5 | df-he 43806 | . 2 ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) | |
| 6 | df-he 43806 | . 2 ⊢ (𝑆 hereditary 𝐵 ↔ (𝑆 “ 𝐵) ⊆ 𝐵) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ⊆ wss 3897 “ cima 5614 hereditary whe 43805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-he 43806 |
| This theorem is referenced by: heeq1 43810 heeq2 43811 frege77 43973 |
| Copyright terms: Public domain | W3C validator |