![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > heeq12 | Structured version Visualization version GIF version |
Description: Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
Ref | Expression |
---|---|
heeq12 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → 𝑅 = 𝑆) | |
2 | simpr 484 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
3 | 1, 2 | imaeq12d 6090 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 “ 𝐴) = (𝑆 “ 𝐵)) |
4 | 3, 2 | sseq12d 4042 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → ((𝑅 “ 𝐴) ⊆ 𝐴 ↔ (𝑆 “ 𝐵) ⊆ 𝐵)) |
5 | df-he 43735 | . 2 ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) | |
6 | df-he 43735 | . 2 ⊢ (𝑆 hereditary 𝐵 ↔ (𝑆 “ 𝐵) ⊆ 𝐵) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ⊆ wss 3976 “ cima 5703 hereditary whe 43734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-he 43735 |
This theorem is referenced by: heeq1 43739 heeq2 43740 frege77 43902 |
Copyright terms: Public domain | W3C validator |