![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > heeq12 | Structured version Visualization version GIF version |
Description: Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
Ref | Expression |
---|---|
heeq12 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → 𝑅 = 𝑆) | |
2 | simpr 484 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
3 | 1, 2 | imaeq12d 6060 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 “ 𝐴) = (𝑆 “ 𝐵)) |
4 | 3, 2 | sseq12d 4015 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → ((𝑅 “ 𝐴) ⊆ 𝐴 ↔ (𝑆 “ 𝐵) ⊆ 𝐵)) |
5 | df-he 42987 | . 2 ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) | |
6 | df-he 42987 | . 2 ⊢ (𝑆 hereditary 𝐵 ↔ (𝑆 “ 𝐵) ⊆ 𝐵) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ⊆ wss 3948 “ cima 5679 hereditary whe 42986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-he 42987 |
This theorem is referenced by: heeq1 42991 heeq2 42992 frege77 43154 |
Copyright terms: Public domain | W3C validator |