Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > heeq12 | Structured version Visualization version GIF version |
Description: Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
Ref | Expression |
---|---|
heeq12 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → 𝑅 = 𝑆) | |
2 | simpr 488 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
3 | 1, 2 | imaeq12d 5958 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 “ 𝐴) = (𝑆 “ 𝐵)) |
4 | 3, 2 | sseq12d 3951 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → ((𝑅 “ 𝐴) ⊆ 𝐴 ↔ (𝑆 “ 𝐵) ⊆ 𝐵)) |
5 | df-he 41243 | . 2 ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) | |
6 | df-he 41243 | . 2 ⊢ (𝑆 hereditary 𝐵 ↔ (𝑆 “ 𝐵) ⊆ 𝐵) | |
7 | 4, 5, 6 | 3bitr4g 317 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ⊆ wss 3884 “ cima 5582 hereditary whe 41242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5585 df-cnv 5587 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-he 41243 |
This theorem is referenced by: heeq1 41247 heeq2 41248 frege77 41410 |
Copyright terms: Public domain | W3C validator |