Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfhe2 Structured version   Visualization version   GIF version

Theorem dfhe2 43756
Description: The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.)
Assertion
Ref Expression
dfhe2 (𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐴))

Proof of Theorem dfhe2
StepHypRef Expression
1 df-he 43755 . 2 (𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ 𝐴)
2 resssxp 6245 . 2 ((𝑅𝐴) ⊆ 𝐴 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐴))
31, 2bitri 275 1 (𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wss 3916   × cxp 5638  cres 5642  cima 5643   hereditary whe 43754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-rel 5647  df-cnv 5648  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-he 43755
This theorem is referenced by:  idhe  43769
  Copyright terms: Public domain W3C validator