Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfhe2 Structured version   Visualization version   GIF version

Theorem dfhe2 41382
Description: The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.)
Assertion
Ref Expression
dfhe2 (𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐴))

Proof of Theorem dfhe2
StepHypRef Expression
1 df-he 41381 . 2 (𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ 𝐴)
2 resssxp 6173 . 2 ((𝑅𝐴) ⊆ 𝐴 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐴))
31, 2bitri 274 1 (𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wss 3887   × cxp 5587  cres 5591  cima 5592   hereditary whe 41380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-he 41381
This theorem is referenced by:  idhe  41395
  Copyright terms: Public domain W3C validator