Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcheg | Structured version Visualization version GIF version |
Description: Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020.) |
Ref | Expression |
---|---|
sbcheg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcssg 4451 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) | |
2 | csbima12 5976 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶)) |
4 | 3 | sseq1d 3948 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
5 | 1, 4 | bitrd 278 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
6 | df-he 41270 | . . 3 ⊢ (𝐵 hereditary 𝐶 ↔ (𝐵 “ 𝐶) ⊆ 𝐶) | |
7 | 6 | sbcbii 3772 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ [𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶) |
8 | df-he 41270 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶) | |
9 | 5, 7, 8 | 3bitr4g 313 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 [wsbc 3711 ⦋csb 3828 ⊆ wss 3883 “ cima 5583 hereditary whe 41269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-he 41270 |
This theorem is referenced by: frege77 41437 |
Copyright terms: Public domain | W3C validator |