| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcheg | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020.) |
| Ref | Expression |
|---|---|
| sbcheg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcssg 4470 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) | |
| 2 | csbima12 6028 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶)) |
| 4 | 3 | sseq1d 3966 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
| 5 | 1, 4 | bitrd 279 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
| 6 | df-he 43812 | . . 3 ⊢ (𝐵 hereditary 𝐶 ↔ (𝐵 “ 𝐶) ⊆ 𝐶) | |
| 7 | 6 | sbcbii 3798 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ [𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶) |
| 8 | df-he 43812 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶) | |
| 9 | 5, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 [wsbc 3741 ⦋csb 3850 ⊆ wss 3902 “ cima 5619 hereditary whe 43811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-he 43812 |
| This theorem is referenced by: frege77 43979 |
| Copyright terms: Public domain | W3C validator |