Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcheg Structured version   Visualization version   GIF version

Theorem sbcheg 39029
Description: Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020.)
Assertion
Ref Expression
sbcheg (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶𝐴 / 𝑥𝐵 hereditary 𝐴 / 𝑥𝐶))

Proof of Theorem sbcheg
StepHypRef Expression
1 sbcssg 4306 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥](𝐵𝐶) ⊆ 𝐶𝐴 / 𝑥(𝐵𝐶) ⊆ 𝐴 / 𝑥𝐶))
2 csbima12 5737 . . . . 5 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
32a1i 11 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
43sseq1d 3851 . . 3 (𝐴𝑉 → (𝐴 / 𝑥(𝐵𝐶) ⊆ 𝐴 / 𝑥𝐶 ↔ (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) ⊆ 𝐴 / 𝑥𝐶))
51, 4bitrd 271 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](𝐵𝐶) ⊆ 𝐶 ↔ (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) ⊆ 𝐴 / 𝑥𝐶))
6 df-he 39023 . . 3 (𝐵 hereditary 𝐶 ↔ (𝐵𝐶) ⊆ 𝐶)
76sbcbii 3703 . 2 ([𝐴 / 𝑥]𝐵 hereditary 𝐶[𝐴 / 𝑥](𝐵𝐶) ⊆ 𝐶)
8 df-he 39023 . 2 (𝐴 / 𝑥𝐵 hereditary 𝐴 / 𝑥𝐶 ↔ (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) ⊆ 𝐴 / 𝑥𝐶)
95, 7, 83bitr4g 306 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶𝐴 / 𝑥𝐵 hereditary 𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1601  wcel 2107  [wsbc 3652  csb 3751  wss 3792  cima 5358   hereditary whe 39022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4887  df-opab 4949  df-xp 5361  df-cnv 5363  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-he 39023
This theorem is referenced by:  frege77  39190
  Copyright terms: Public domain W3C validator