Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcheg Structured version   Visualization version   GIF version

Theorem sbcheg 43899
Description: Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020.)
Assertion
Ref Expression
sbcheg (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶𝐴 / 𝑥𝐵 hereditary 𝐴 / 𝑥𝐶))

Proof of Theorem sbcheg
StepHypRef Expression
1 sbcssg 4471 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥](𝐵𝐶) ⊆ 𝐶𝐴 / 𝑥(𝐵𝐶) ⊆ 𝐴 / 𝑥𝐶))
2 csbima12 6034 . . . . 5 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
32a1i 11 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
43sseq1d 3962 . . 3 (𝐴𝑉 → (𝐴 / 𝑥(𝐵𝐶) ⊆ 𝐴 / 𝑥𝐶 ↔ (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) ⊆ 𝐴 / 𝑥𝐶))
51, 4bitrd 279 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](𝐵𝐶) ⊆ 𝐶 ↔ (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) ⊆ 𝐴 / 𝑥𝐶))
6 df-he 43893 . . 3 (𝐵 hereditary 𝐶 ↔ (𝐵𝐶) ⊆ 𝐶)
76sbcbii 3794 . 2 ([𝐴 / 𝑥]𝐵 hereditary 𝐶[𝐴 / 𝑥](𝐵𝐶) ⊆ 𝐶)
8 df-he 43893 . 2 (𝐴 / 𝑥𝐵 hereditary 𝐴 / 𝑥𝐶 ↔ (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) ⊆ 𝐴 / 𝑥𝐶)
95, 7, 83bitr4g 314 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶𝐴 / 𝑥𝐵 hereditary 𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  [wsbc 3737  csb 3846  wss 3898  cima 5624   hereditary whe 43892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-he 43893
This theorem is referenced by:  frege77  44060
  Copyright terms: Public domain W3C validator