Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcheg | Structured version Visualization version GIF version |
Description: Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020.) |
Ref | Expression |
---|---|
sbcheg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcssg 4472 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) | |
2 | csbima12 6021 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶)) |
4 | 3 | sseq1d 3966 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
5 | 1, 4 | bitrd 279 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
6 | df-he 41754 | . . 3 ⊢ (𝐵 hereditary 𝐶 ↔ (𝐵 “ 𝐶) ⊆ 𝐶) | |
7 | 6 | sbcbii 3790 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ [𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶) |
8 | df-he 41754 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶) | |
9 | 5, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 [wsbc 3730 ⦋csb 3846 ⊆ wss 3901 “ cima 5627 hereditary whe 41753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-br 5097 df-opab 5159 df-xp 5630 df-cnv 5632 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-he 41754 |
This theorem is referenced by: frege77 41921 |
Copyright terms: Public domain | W3C validator |