Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcheg Structured version   Visualization version   GIF version

Theorem sbcheg 42832
Description: Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020.)
Assertion
Ref Expression
sbcheg (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶𝐴 / 𝑥𝐵 hereditary 𝐴 / 𝑥𝐶))

Proof of Theorem sbcheg
StepHypRef Expression
1 sbcssg 4522 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥](𝐵𝐶) ⊆ 𝐶𝐴 / 𝑥(𝐵𝐶) ⊆ 𝐴 / 𝑥𝐶))
2 csbima12 6077 . . . . 5 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
32a1i 11 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
43sseq1d 4012 . . 3 (𝐴𝑉 → (𝐴 / 𝑥(𝐵𝐶) ⊆ 𝐴 / 𝑥𝐶 ↔ (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) ⊆ 𝐴 / 𝑥𝐶))
51, 4bitrd 278 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](𝐵𝐶) ⊆ 𝐶 ↔ (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) ⊆ 𝐴 / 𝑥𝐶))
6 df-he 42826 . . 3 (𝐵 hereditary 𝐶 ↔ (𝐵𝐶) ⊆ 𝐶)
76sbcbii 3836 . 2 ([𝐴 / 𝑥]𝐵 hereditary 𝐶[𝐴 / 𝑥](𝐵𝐶) ⊆ 𝐶)
8 df-he 42826 . 2 (𝐴 / 𝑥𝐵 hereditary 𝐴 / 𝑥𝐶 ↔ (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) ⊆ 𝐴 / 𝑥𝐶)
95, 7, 83bitr4g 313 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶𝐴 / 𝑥𝐵 hereditary 𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2104  [wsbc 3776  csb 3892  wss 3947  cima 5678   hereditary whe 42825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-he 42826
This theorem is referenced by:  frege77  42993
  Copyright terms: Public domain W3C validator