![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcheg | Structured version Visualization version GIF version |
Description: Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020.) |
Ref | Expression |
---|---|
sbcheg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcssg 4306 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) | |
2 | csbima12 5737 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶)) |
4 | 3 | sseq1d 3851 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
5 | 1, 4 | bitrd 271 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
6 | df-he 39023 | . . 3 ⊢ (𝐵 hereditary 𝐶 ↔ (𝐵 “ 𝐶) ⊆ 𝐶) | |
7 | 6 | sbcbii 3703 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ [𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶) |
8 | df-he 39023 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶) | |
9 | 5, 7, 8 | 3bitr4g 306 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1601 ∈ wcel 2107 [wsbc 3652 ⦋csb 3751 ⊆ wss 3792 “ cima 5358 hereditary whe 39022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4887 df-opab 4949 df-xp 5361 df-cnv 5363 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-he 39023 |
This theorem is referenced by: frege77 39190 |
Copyright terms: Public domain | W3C validator |