![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcheg | Structured version Visualization version GIF version |
Description: Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020.) |
Ref | Expression |
---|---|
sbcheg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcssg 4522 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) | |
2 | csbima12 6077 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶)) |
4 | 3 | sseq1d 4012 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌(𝐵 “ 𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
5 | 1, 4 | bitrd 278 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
6 | df-he 42826 | . . 3 ⊢ (𝐵 hereditary 𝐶 ↔ (𝐵 “ 𝐶) ⊆ 𝐶) | |
7 | 6 | sbcbii 3836 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ [𝐴 / 𝑥](𝐵 “ 𝐶) ⊆ 𝐶) |
8 | df-he 42826 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶 ↔ (⦋𝐴 / 𝑥⦌𝐵 “ ⦋𝐴 / 𝑥⦌𝐶) ⊆ ⦋𝐴 / 𝑥⦌𝐶) | |
9 | 5, 7, 8 | 3bitr4g 313 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 [wsbc 3776 ⦋csb 3892 ⊆ wss 3947 “ cima 5678 hereditary whe 42825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-he 42826 |
This theorem is referenced by: frege77 42993 |
Copyright terms: Public domain | W3C validator |