Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hess Structured version   Visualization version   GIF version

Theorem hess 42833
Description: Subclass law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.)
Assertion
Ref Expression
hess (𝑆𝑅 → (𝑅 hereditary 𝐴𝑆 hereditary 𝐴))

Proof of Theorem hess
StepHypRef Expression
1 imass1 6099 . . 3 (𝑆𝑅 → (𝑆𝐴) ⊆ (𝑅𝐴))
2 sstr2 3988 . . 3 ((𝑆𝐴) ⊆ (𝑅𝐴) → ((𝑅𝐴) ⊆ 𝐴 → (𝑆𝐴) ⊆ 𝐴))
31, 2syl 17 . 2 (𝑆𝑅 → ((𝑅𝐴) ⊆ 𝐴 → (𝑆𝐴) ⊆ 𝐴))
4 df-he 42826 . 2 (𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ 𝐴)
5 df-he 42826 . 2 (𝑆 hereditary 𝐴 ↔ (𝑆𝐴) ⊆ 𝐴)
63, 4, 53imtr4g 295 1 (𝑆𝑅 → (𝑅 hereditary 𝐴𝑆 hereditary 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3947  cima 5678   hereditary whe 42825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-he 42826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator