Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hess Structured version   Visualization version   GIF version

Theorem hess 41277
Description: Subclass law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.)
Assertion
Ref Expression
hess (𝑆𝑅 → (𝑅 hereditary 𝐴𝑆 hereditary 𝐴))

Proof of Theorem hess
StepHypRef Expression
1 imass1 5998 . . 3 (𝑆𝑅 → (𝑆𝐴) ⊆ (𝑅𝐴))
2 sstr2 3924 . . 3 ((𝑆𝐴) ⊆ (𝑅𝐴) → ((𝑅𝐴) ⊆ 𝐴 → (𝑆𝐴) ⊆ 𝐴))
31, 2syl 17 . 2 (𝑆𝑅 → ((𝑅𝐴) ⊆ 𝐴 → (𝑆𝐴) ⊆ 𝐴))
4 df-he 41270 . 2 (𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ 𝐴)
5 df-he 41270 . 2 (𝑆 hereditary 𝐴 ↔ (𝑆𝐴) ⊆ 𝐴)
63, 4, 53imtr4g 295 1 (𝑆𝑅 → (𝑅 hereditary 𝐴𝑆 hereditary 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3883  cima 5583   hereditary whe 41269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-he 41270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator