| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hess | Structured version Visualization version GIF version | ||
| Description: Subclass law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| hess | ⊢ (𝑆 ⊆ 𝑅 → (𝑅 hereditary 𝐴 → 𝑆 hereditary 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imass1 6049 | . . 3 ⊢ (𝑆 ⊆ 𝑅 → (𝑆 “ 𝐴) ⊆ (𝑅 “ 𝐴)) | |
| 2 | sstr2 3936 | . . 3 ⊢ ((𝑆 “ 𝐴) ⊆ (𝑅 “ 𝐴) → ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝑆 “ 𝐴) ⊆ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝑆 ⊆ 𝑅 → ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝑆 “ 𝐴) ⊆ 𝐴)) |
| 4 | df-he 43876 | . 2 ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) | |
| 5 | df-he 43876 | . 2 ⊢ (𝑆 hereditary 𝐴 ↔ (𝑆 “ 𝐴) ⊆ 𝐴) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (𝑆 ⊆ 𝑅 → (𝑅 hereditary 𝐴 → 𝑆 hereditary 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3897 “ cima 5617 hereditary whe 43875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-he 43876 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |