Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hess Structured version   Visualization version   GIF version

Theorem hess 43751
Description: Subclass law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.)
Assertion
Ref Expression
hess (𝑆𝑅 → (𝑅 hereditary 𝐴𝑆 hereditary 𝐴))

Proof of Theorem hess
StepHypRef Expression
1 imass1 6088 . . 3 (𝑆𝑅 → (𝑆𝐴) ⊆ (𝑅𝐴))
2 sstr2 3965 . . 3 ((𝑆𝐴) ⊆ (𝑅𝐴) → ((𝑅𝐴) ⊆ 𝐴 → (𝑆𝐴) ⊆ 𝐴))
31, 2syl 17 . 2 (𝑆𝑅 → ((𝑅𝐴) ⊆ 𝐴 → (𝑆𝐴) ⊆ 𝐴))
4 df-he 43744 . 2 (𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ 𝐴)
5 df-he 43744 . 2 (𝑆 hereditary 𝐴 ↔ (𝑆𝐴) ⊆ 𝐴)
63, 4, 53imtr4g 296 1 (𝑆𝑅 → (𝑅 hereditary 𝐴𝑆 hereditary 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3926  cima 5657   hereditary whe 43743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-he 43744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator