Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hess | Structured version Visualization version GIF version |
Description: Subclass law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
Ref | Expression |
---|---|
hess | ⊢ (𝑆 ⊆ 𝑅 → (𝑅 hereditary 𝐴 → 𝑆 hereditary 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imass1 5969 | . . 3 ⊢ (𝑆 ⊆ 𝑅 → (𝑆 “ 𝐴) ⊆ (𝑅 “ 𝐴)) | |
2 | sstr2 3908 | . . 3 ⊢ ((𝑆 “ 𝐴) ⊆ (𝑅 “ 𝐴) → ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝑆 “ 𝐴) ⊆ 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑆 ⊆ 𝑅 → ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝑆 “ 𝐴) ⊆ 𝐴)) |
4 | df-he 41058 | . 2 ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) | |
5 | df-he 41058 | . 2 ⊢ (𝑆 hereditary 𝐴 ↔ (𝑆 “ 𝐴) ⊆ 𝐴) | |
6 | 3, 4, 5 | 3imtr4g 299 | 1 ⊢ (𝑆 ⊆ 𝑅 → (𝑅 hereditary 𝐴 → 𝑆 hereditary 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3866 “ cima 5554 hereditary whe 41057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-cnv 5559 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-he 41058 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |