![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hess | Structured version Visualization version GIF version |
Description: Subclass law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
Ref | Expression |
---|---|
hess | ⊢ (𝑆 ⊆ 𝑅 → (𝑅 hereditary 𝐴 → 𝑆 hereditary 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imass1 5754 | . . 3 ⊢ (𝑆 ⊆ 𝑅 → (𝑆 “ 𝐴) ⊆ (𝑅 “ 𝐴)) | |
2 | sstr2 3828 | . . 3 ⊢ ((𝑆 “ 𝐴) ⊆ (𝑅 “ 𝐴) → ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝑆 “ 𝐴) ⊆ 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑆 ⊆ 𝑅 → ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝑆 “ 𝐴) ⊆ 𝐴)) |
4 | df-he 39023 | . 2 ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) | |
5 | df-he 39023 | . 2 ⊢ (𝑆 hereditary 𝐴 ↔ (𝑆 “ 𝐴) ⊆ 𝐴) | |
6 | 3, 4, 5 | 3imtr4g 288 | 1 ⊢ (𝑆 ⊆ 𝑅 → (𝑅 hereditary 𝐴 → 𝑆 hereditary 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3792 “ cima 5358 hereditary whe 39022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4887 df-opab 4949 df-cnv 5363 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-he 39023 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |