Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > he0 | Structured version Visualization version GIF version |
Description: Any relation is hereditary in the empty set. (Contributed by RP, 27-Mar-2020.) |
Ref | Expression |
---|---|
he0 | ⊢ 𝐴 hereditary ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ima0 5984 | . . 3 ⊢ (𝐴 “ ∅) = ∅ | |
2 | 1 | eqimssi 3984 | . 2 ⊢ (𝐴 “ ∅) ⊆ ∅ |
3 | df-he 41351 | . 2 ⊢ (𝐴 hereditary ∅ ↔ (𝐴 “ ∅) ⊆ ∅) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝐴 hereditary ∅ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3892 ∅c0 4262 “ cima 5593 hereditary whe 41350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5596 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-he 41351 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |