Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  he0 Structured version   Visualization version   GIF version

Theorem he0 41362
Description: Any relation is hereditary in the empty set. (Contributed by RP, 27-Mar-2020.)
Assertion
Ref Expression
he0 𝐴 hereditary ∅

Proof of Theorem he0
StepHypRef Expression
1 ima0 5984 . . 3 (𝐴 “ ∅) = ∅
21eqimssi 3984 . 2 (𝐴 “ ∅) ⊆ ∅
3 df-he 41351 . 2 (𝐴 hereditary ∅ ↔ (𝐴 “ ∅) ⊆ ∅)
42, 3mpbir 230 1 𝐴 hereditary ∅
Colors of variables: wff setvar class
Syntax hints:  wss 3892  c0 4262  cima 5593   hereditary whe 41350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-xp 5596  df-cnv 5598  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-he 41351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator