![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > he0 | Structured version Visualization version GIF version |
Description: Any relation is hereditary in the empty set. (Contributed by RP, 27-Mar-2020.) |
Ref | Expression |
---|---|
he0 | ⊢ 𝐴 hereditary ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ima0 6106 | . . 3 ⊢ (𝐴 “ ∅) = ∅ | |
2 | 1 | eqimssi 4069 | . 2 ⊢ (𝐴 “ ∅) ⊆ ∅ |
3 | df-he 43735 | . 2 ⊢ (𝐴 hereditary ∅ ↔ (𝐴 “ ∅) ⊆ ∅) | |
4 | 2, 3 | mpbir 231 | 1 ⊢ 𝐴 hereditary ∅ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 ∅c0 4352 “ cima 5703 hereditary whe 43734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-he 43735 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |