![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unhe1 | Structured version Visualization version GIF version |
Description: The union of two relations hereditary in a class is also hereditary in a class. (Contributed by RP, 28-Mar-2020.) |
Ref | Expression |
---|---|
unhe1 | ⊢ ((𝑅 hereditary 𝐴 ∧ 𝑆 hereditary 𝐴) → (𝑅 ∪ 𝑆) hereditary 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-he 38837 | . . 3 ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) | |
2 | df-he 38837 | . . 3 ⊢ (𝑆 hereditary 𝐴 ↔ (𝑆 “ 𝐴) ⊆ 𝐴) | |
3 | imaundir 5761 | . . . 4 ⊢ ((𝑅 ∪ 𝑆) “ 𝐴) = ((𝑅 “ 𝐴) ∪ (𝑆 “ 𝐴)) | |
4 | unss 3983 | . . . . 5 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ (𝑆 “ 𝐴) ⊆ 𝐴) ↔ ((𝑅 “ 𝐴) ∪ (𝑆 “ 𝐴)) ⊆ 𝐴) | |
5 | 4 | biimpi 208 | . . . 4 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ (𝑆 “ 𝐴) ⊆ 𝐴) → ((𝑅 “ 𝐴) ∪ (𝑆 “ 𝐴)) ⊆ 𝐴) |
6 | 3, 5 | syl5eqss 3843 | . . 3 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ (𝑆 “ 𝐴) ⊆ 𝐴) → ((𝑅 ∪ 𝑆) “ 𝐴) ⊆ 𝐴) |
7 | 1, 2, 6 | syl2anb 592 | . 2 ⊢ ((𝑅 hereditary 𝐴 ∧ 𝑆 hereditary 𝐴) → ((𝑅 ∪ 𝑆) “ 𝐴) ⊆ 𝐴) |
8 | df-he 38837 | . 2 ⊢ ((𝑅 ∪ 𝑆) hereditary 𝐴 ↔ ((𝑅 ∪ 𝑆) “ 𝐴) ⊆ 𝐴) | |
9 | 7, 8 | sylibr 226 | 1 ⊢ ((𝑅 hereditary 𝐴 ∧ 𝑆 hereditary 𝐴) → (𝑅 ∪ 𝑆) hereditary 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∪ cun 3765 ⊆ wss 3767 “ cima 5313 hereditary whe 38836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-opab 4904 df-cnv 5318 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-he 38837 |
This theorem is referenced by: sshepw 38853 |
Copyright terms: Public domain | W3C validator |