![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unhe1 | Structured version Visualization version GIF version |
Description: The union of two relations hereditary in a class is also hereditary in a class. (Contributed by RP, 28-Mar-2020.) |
Ref | Expression |
---|---|
unhe1 | ⊢ ((𝑅 hereditary 𝐴 ∧ 𝑆 hereditary 𝐴) → (𝑅 ∪ 𝑆) hereditary 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-he 43073 | . . 3 ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) | |
2 | df-he 43073 | . . 3 ⊢ (𝑆 hereditary 𝐴 ↔ (𝑆 “ 𝐴) ⊆ 𝐴) | |
3 | imaundir 6141 | . . . 4 ⊢ ((𝑅 ∪ 𝑆) “ 𝐴) = ((𝑅 “ 𝐴) ∪ (𝑆 “ 𝐴)) | |
4 | unss 4177 | . . . . 5 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ (𝑆 “ 𝐴) ⊆ 𝐴) ↔ ((𝑅 “ 𝐴) ∪ (𝑆 “ 𝐴)) ⊆ 𝐴) | |
5 | 4 | biimpi 215 | . . . 4 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ (𝑆 “ 𝐴) ⊆ 𝐴) → ((𝑅 “ 𝐴) ∪ (𝑆 “ 𝐴)) ⊆ 𝐴) |
6 | 3, 5 | eqsstrid 4023 | . . 3 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ (𝑆 “ 𝐴) ⊆ 𝐴) → ((𝑅 ∪ 𝑆) “ 𝐴) ⊆ 𝐴) |
7 | 1, 2, 6 | syl2anb 597 | . 2 ⊢ ((𝑅 hereditary 𝐴 ∧ 𝑆 hereditary 𝐴) → ((𝑅 ∪ 𝑆) “ 𝐴) ⊆ 𝐴) |
8 | df-he 43073 | . 2 ⊢ ((𝑅 ∪ 𝑆) hereditary 𝐴 ↔ ((𝑅 ∪ 𝑆) “ 𝐴) ⊆ 𝐴) | |
9 | 7, 8 | sylibr 233 | 1 ⊢ ((𝑅 hereditary 𝐴 ∧ 𝑆 hereditary 𝐴) → (𝑅 ∪ 𝑆) hereditary 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3939 ⊆ wss 3941 “ cima 5670 hereditary whe 43072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-he 43073 |
This theorem is referenced by: sshepw 43089 |
Copyright terms: Public domain | W3C validator |