Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unhe1 Structured version   Visualization version   GIF version

Theorem unhe1 43085
Description: The union of two relations hereditary in a class is also hereditary in a class. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
unhe1 ((𝑅 hereditary 𝐴𝑆 hereditary 𝐴) → (𝑅𝑆) hereditary 𝐴)

Proof of Theorem unhe1
StepHypRef Expression
1 df-he 43073 . . 3 (𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ 𝐴)
2 df-he 43073 . . 3 (𝑆 hereditary 𝐴 ↔ (𝑆𝐴) ⊆ 𝐴)
3 imaundir 6141 . . . 4 ((𝑅𝑆) “ 𝐴) = ((𝑅𝐴) ∪ (𝑆𝐴))
4 unss 4177 . . . . 5 (((𝑅𝐴) ⊆ 𝐴 ∧ (𝑆𝐴) ⊆ 𝐴) ↔ ((𝑅𝐴) ∪ (𝑆𝐴)) ⊆ 𝐴)
54biimpi 215 . . . 4 (((𝑅𝐴) ⊆ 𝐴 ∧ (𝑆𝐴) ⊆ 𝐴) → ((𝑅𝐴) ∪ (𝑆𝐴)) ⊆ 𝐴)
63, 5eqsstrid 4023 . . 3 (((𝑅𝐴) ⊆ 𝐴 ∧ (𝑆𝐴) ⊆ 𝐴) → ((𝑅𝑆) “ 𝐴) ⊆ 𝐴)
71, 2, 6syl2anb 597 . 2 ((𝑅 hereditary 𝐴𝑆 hereditary 𝐴) → ((𝑅𝑆) “ 𝐴) ⊆ 𝐴)
8 df-he 43073 . 2 ((𝑅𝑆) hereditary 𝐴 ↔ ((𝑅𝑆) “ 𝐴) ⊆ 𝐴)
97, 8sylibr 233 1 ((𝑅 hereditary 𝐴𝑆 hereditary 𝐴) → (𝑅𝑆) hereditary 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cun 3939  wss 3941  cima 5670   hereditary whe 43072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-he 43073
This theorem is referenced by:  sshepw  43089
  Copyright terms: Public domain W3C validator