Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unhe1 | Structured version Visualization version GIF version |
Description: The union of two relations hereditary in a class is also hereditary in a class. (Contributed by RP, 28-Mar-2020.) |
Ref | Expression |
---|---|
unhe1 | ⊢ ((𝑅 hereditary 𝐴 ∧ 𝑆 hereditary 𝐴) → (𝑅 ∪ 𝑆) hereditary 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-he 41362 | . . 3 ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) | |
2 | df-he 41362 | . . 3 ⊢ (𝑆 hereditary 𝐴 ↔ (𝑆 “ 𝐴) ⊆ 𝐴) | |
3 | imaundir 6047 | . . . 4 ⊢ ((𝑅 ∪ 𝑆) “ 𝐴) = ((𝑅 “ 𝐴) ∪ (𝑆 “ 𝐴)) | |
4 | unss 4117 | . . . . 5 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ (𝑆 “ 𝐴) ⊆ 𝐴) ↔ ((𝑅 “ 𝐴) ∪ (𝑆 “ 𝐴)) ⊆ 𝐴) | |
5 | 4 | biimpi 215 | . . . 4 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ (𝑆 “ 𝐴) ⊆ 𝐴) → ((𝑅 “ 𝐴) ∪ (𝑆 “ 𝐴)) ⊆ 𝐴) |
6 | 3, 5 | eqsstrid 3968 | . . 3 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ (𝑆 “ 𝐴) ⊆ 𝐴) → ((𝑅 ∪ 𝑆) “ 𝐴) ⊆ 𝐴) |
7 | 1, 2, 6 | syl2anb 598 | . 2 ⊢ ((𝑅 hereditary 𝐴 ∧ 𝑆 hereditary 𝐴) → ((𝑅 ∪ 𝑆) “ 𝐴) ⊆ 𝐴) |
8 | df-he 41362 | . 2 ⊢ ((𝑅 ∪ 𝑆) hereditary 𝐴 ↔ ((𝑅 ∪ 𝑆) “ 𝐴) ⊆ 𝐴) | |
9 | 7, 8 | sylibr 233 | 1 ⊢ ((𝑅 hereditary 𝐴 ∧ 𝑆 hereditary 𝐴) → (𝑅 ∪ 𝑆) hereditary 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∪ cun 3884 ⊆ wss 3886 “ cima 5587 hereditary whe 41361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5074 df-opab 5136 df-cnv 5592 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-he 41362 |
This theorem is referenced by: sshepw 41378 |
Copyright terms: Public domain | W3C validator |