Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unhe1 Structured version   Visualization version   GIF version

Theorem unhe1 42521
Description: The union of two relations hereditary in a class is also hereditary in a class. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
unhe1 ((𝑅 hereditary 𝐴𝑆 hereditary 𝐴) → (𝑅𝑆) hereditary 𝐴)

Proof of Theorem unhe1
StepHypRef Expression
1 df-he 42509 . . 3 (𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ 𝐴)
2 df-he 42509 . . 3 (𝑆 hereditary 𝐴 ↔ (𝑆𝐴) ⊆ 𝐴)
3 imaundir 6147 . . . 4 ((𝑅𝑆) “ 𝐴) = ((𝑅𝐴) ∪ (𝑆𝐴))
4 unss 4183 . . . . 5 (((𝑅𝐴) ⊆ 𝐴 ∧ (𝑆𝐴) ⊆ 𝐴) ↔ ((𝑅𝐴) ∪ (𝑆𝐴)) ⊆ 𝐴)
54biimpi 215 . . . 4 (((𝑅𝐴) ⊆ 𝐴 ∧ (𝑆𝐴) ⊆ 𝐴) → ((𝑅𝐴) ∪ (𝑆𝐴)) ⊆ 𝐴)
63, 5eqsstrid 4029 . . 3 (((𝑅𝐴) ⊆ 𝐴 ∧ (𝑆𝐴) ⊆ 𝐴) → ((𝑅𝑆) “ 𝐴) ⊆ 𝐴)
71, 2, 6syl2anb 598 . 2 ((𝑅 hereditary 𝐴𝑆 hereditary 𝐴) → ((𝑅𝑆) “ 𝐴) ⊆ 𝐴)
8 df-he 42509 . 2 ((𝑅𝑆) hereditary 𝐴 ↔ ((𝑅𝑆) “ 𝐴) ⊆ 𝐴)
97, 8sylibr 233 1 ((𝑅 hereditary 𝐴𝑆 hereditary 𝐴) → (𝑅𝑆) hereditary 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  cun 3945  wss 3947  cima 5678   hereditary whe 42508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-he 42509
This theorem is referenced by:  sshepw  42525
  Copyright terms: Public domain W3C validator