Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0he Structured version   Visualization version   GIF version

Theorem 0he 41343
Description: The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.)
Assertion
Ref Expression
0he ∅ hereditary 𝐴

Proof of Theorem 0he
StepHypRef Expression
1 0ima 5983 . . 3 (∅ “ 𝐴) = ∅
2 0ss 4335 . . 3 ∅ ⊆ 𝐴
31, 2eqsstri 3959 . 2 (∅ “ 𝐴) ⊆ 𝐴
4 df-he 41334 . 2 (∅ hereditary 𝐴 ↔ (∅ “ 𝐴) ⊆ 𝐴)
53, 4mpbir 230 1 ∅ hereditary 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3891  c0 4261  cima 5591   hereditary whe 41333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-he 41334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator