Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0he | Structured version Visualization version GIF version |
Description: The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) |
Ref | Expression |
---|---|
0he | ⊢ ∅ hereditary 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ima 5996 | . . 3 ⊢ (∅ “ 𝐴) = ∅ | |
2 | 0ss 4336 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 3960 | . 2 ⊢ (∅ “ 𝐴) ⊆ 𝐴 |
4 | df-he 41594 | . 2 ⊢ (∅ hereditary 𝐴 ↔ (∅ “ 𝐴) ⊆ 𝐴) | |
5 | 3, 4 | mpbir 230 | 1 ⊢ ∅ hereditary 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3892 ∅c0 4262 “ cima 5603 hereditary whe 41593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-he 41594 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |