| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0he | Structured version Visualization version GIF version | ||
| Description: The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| 0he | ⊢ ∅ hereditary 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ima 6026 | . . 3 ⊢ (∅ “ 𝐴) = ∅ | |
| 2 | 0ss 4347 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3976 | . 2 ⊢ (∅ “ 𝐴) ⊆ 𝐴 |
| 4 | df-he 43876 | . 2 ⊢ (∅ hereditary 𝐴 ↔ (∅ “ 𝐴) ⊆ 𝐴) | |
| 5 | 3, 4 | mpbir 231 | 1 ⊢ ∅ hereditary 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 ∅c0 4280 “ cima 5617 hereditary whe 43875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-he 43876 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |