Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0he Structured version   Visualization version   GIF version

Theorem 0he 43744
Description: The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.)
Assertion
Ref Expression
0he ∅ hereditary 𝐴

Proof of Theorem 0he
StepHypRef Expression
1 0ima 6107 . . 3 (∅ “ 𝐴) = ∅
2 0ss 4423 . . 3 ∅ ⊆ 𝐴
31, 2eqsstri 4043 . 2 (∅ “ 𝐴) ⊆ 𝐴
4 df-he 43735 . 2 (∅ hereditary 𝐴 ↔ (∅ “ 𝐴) ⊆ 𝐴)
53, 4mpbir 231 1 ∅ hereditary 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3976  c0 4352  cima 5703   hereditary whe 43734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-he 43735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator