Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfhe3 Structured version   Visualization version   GIF version

Theorem dfhe3 43737
Description: The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.)
Assertion
Ref Expression
dfhe3 (𝑅 hereditary 𝐴 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem dfhe3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-he 43735 . 2 (𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ 𝐴)
2 19.21v 1938 . . . . . 6 (∀𝑦(𝑥𝐴 → (𝑥𝑅𝑦𝑦𝐴)) ↔ (𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)))
32bicomi 224 . . . . 5 ((𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) ↔ ∀𝑦(𝑥𝐴 → (𝑥𝑅𝑦𝑦𝐴)))
43albii 1817 . . . 4 (∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) ↔ ∀𝑥𝑦(𝑥𝐴 → (𝑥𝑅𝑦𝑦𝐴)))
5 alcom 2160 . . . 4 (∀𝑥𝑦(𝑥𝐴 → (𝑥𝑅𝑦𝑦𝐴)) ↔ ∀𝑦𝑥(𝑥𝐴 → (𝑥𝑅𝑦𝑦𝐴)))
6 impexp 450 . . . . . . . 8 (((𝑥𝐴𝑥𝑅𝑦) → 𝑦𝐴) ↔ (𝑥𝐴 → (𝑥𝑅𝑦𝑦𝐴)))
76bicomi 224 . . . . . . 7 ((𝑥𝐴 → (𝑥𝑅𝑦𝑦𝐴)) ↔ ((𝑥𝐴𝑥𝑅𝑦) → 𝑦𝐴))
87albii 1817 . . . . . 6 (∀𝑥(𝑥𝐴 → (𝑥𝑅𝑦𝑦𝐴)) ↔ ∀𝑥((𝑥𝐴𝑥𝑅𝑦) → 𝑦𝐴))
9 19.23v 1941 . . . . . 6 (∀𝑥((𝑥𝐴𝑥𝑅𝑦) → 𝑦𝐴) ↔ (∃𝑥(𝑥𝐴𝑥𝑅𝑦) → 𝑦𝐴))
108, 9bitri 275 . . . . 5 (∀𝑥(𝑥𝐴 → (𝑥𝑅𝑦𝑦𝐴)) ↔ (∃𝑥(𝑥𝐴𝑥𝑅𝑦) → 𝑦𝐴))
1110albii 1817 . . . 4 (∀𝑦𝑥(𝑥𝐴 → (𝑥𝑅𝑦𝑦𝐴)) ↔ ∀𝑦(∃𝑥(𝑥𝐴𝑥𝑅𝑦) → 𝑦𝐴))
124, 5, 113bitri 297 . . 3 (∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) ↔ ∀𝑦(∃𝑥(𝑥𝐴𝑥𝑅𝑦) → 𝑦𝐴))
13 df-ss 3993 . . . . 5 ({𝑧 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑅)} ⊆ 𝐴 ↔ ∀𝑦(𝑦 ∈ {𝑧 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑅)} → 𝑦𝐴))
14 vex 3492 . . . . . . . 8 𝑦 ∈ V
15 opeq2 4898 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑥, 𝑦⟩)
1615eleq1d 2829 . . . . . . . . . . 11 (𝑧 = 𝑦 → (⟨𝑥, 𝑧⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
17 df-br 5167 . . . . . . . . . . 11 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
1816, 17bitr4di 289 . . . . . . . . . 10 (𝑧 = 𝑦 → (⟨𝑥, 𝑧⟩ ∈ 𝑅𝑥𝑅𝑦))
1918anbi2d 629 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝑥𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ (𝑥𝐴𝑥𝑅𝑦)))
2019exbidv 1920 . . . . . . . 8 (𝑧 = 𝑦 → (∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑅) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝑦)))
2114, 20elab 3694 . . . . . . 7 (𝑦 ∈ {𝑧 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑅)} ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
2221imbi1i 349 . . . . . 6 ((𝑦 ∈ {𝑧 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑅)} → 𝑦𝐴) ↔ (∃𝑥(𝑥𝐴𝑥𝑅𝑦) → 𝑦𝐴))
2322albii 1817 . . . . 5 (∀𝑦(𝑦 ∈ {𝑧 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑅)} → 𝑦𝐴) ↔ ∀𝑦(∃𝑥(𝑥𝐴𝑥𝑅𝑦) → 𝑦𝐴))
2413, 23bitr2i 276 . . . 4 (∀𝑦(∃𝑥(𝑥𝐴𝑥𝑅𝑦) → 𝑦𝐴) ↔ {𝑧 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑅)} ⊆ 𝐴)
25 dfima3 6092 . . . . . 6 (𝑅𝐴) = {𝑧 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑅)}
2625eqcomi 2749 . . . . 5 {𝑧 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑅)} = (𝑅𝐴)
2726sseq1i 4037 . . . 4 ({𝑧 ∣ ∃𝑥(𝑥𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑅)} ⊆ 𝐴 ↔ (𝑅𝐴) ⊆ 𝐴)
2824, 27bitri 275 . . 3 (∀𝑦(∃𝑥(𝑥𝐴𝑥𝑅𝑦) → 𝑦𝐴) ↔ (𝑅𝐴) ⊆ 𝐴)
2912, 28bitr2i 276 . 2 ((𝑅𝐴) ⊆ 𝐴 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)))
301, 29bitri 275 1 (𝑅 hereditary 𝐴 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wex 1777  wcel 2108  {cab 2717  wss 3976  cop 4654   class class class wbr 5166  cima 5703   hereditary whe 43734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-he 43735
This theorem is referenced by:  psshepw  43750  dffrege69  43894
  Copyright terms: Public domain W3C validator