Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snhesn Structured version   Visualization version   GIF version

Theorem snhesn 43748
Description: Any singleton is hereditary in any singleton. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
snhesn {⟨𝐴, 𝐴⟩} hereditary {𝐵}

Proof of Theorem snhesn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . . . 7 𝑥 ∈ V
21elima3 6096 . . . . . 6 (𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) ↔ ∃𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}))
3 velsn 4664 . . . . . 6 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
42, 3imbi12i 350 . . . . 5 ((𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) → 𝑥 ∈ {𝐵}) ↔ (∃𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) → 𝑥 = 𝐵))
54albii 1817 . . . 4 (∀𝑥(𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) → 𝑥 ∈ {𝐵}) ↔ ∀𝑥(∃𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) → 𝑥 = 𝐵))
6 velsn 4664 . . . . . . . 8 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
7 opex 5484 . . . . . . . . . 10 𝑦, 𝑥⟩ ∈ V
87elsn 4663 . . . . . . . . 9 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩} ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐴⟩)
9 vex 3492 . . . . . . . . . 10 𝑦 ∈ V
109, 1opth 5496 . . . . . . . . 9 (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐴⟩ ↔ (𝑦 = 𝐴𝑥 = 𝐴))
118, 10bitri 275 . . . . . . . 8 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩} ↔ (𝑦 = 𝐴𝑥 = 𝐴))
126, 11anbi12i 627 . . . . . . 7 ((𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) ↔ (𝑦 = 𝐵 ∧ (𝑦 = 𝐴𝑥 = 𝐴)))
13 3anass 1095 . . . . . . 7 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) ↔ (𝑦 = 𝐵 ∧ (𝑦 = 𝐴𝑥 = 𝐴)))
1412, 13bitr4i 278 . . . . . 6 ((𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) ↔ (𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴))
15 simp3 1138 . . . . . . 7 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) → 𝑥 = 𝐴)
16 simp2 1137 . . . . . . 7 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) → 𝑦 = 𝐴)
17 simp1 1136 . . . . . . 7 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) → 𝑦 = 𝐵)
1815, 16, 173eqtr2d 2786 . . . . . 6 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) → 𝑥 = 𝐵)
1914, 18sylbi 217 . . . . 5 ((𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) → 𝑥 = 𝐵)
2019exlimiv 1929 . . . 4 (∃𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) → 𝑥 = 𝐵)
215, 20mpgbir 1797 . . 3 𝑥(𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) → 𝑥 ∈ {𝐵})
22 df-ss 3993 . . 3 (({⟨𝐴, 𝐴⟩} “ {𝐵}) ⊆ {𝐵} ↔ ∀𝑥(𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) → 𝑥 ∈ {𝐵}))
2321, 22mpbir 231 . 2 ({⟨𝐴, 𝐴⟩} “ {𝐵}) ⊆ {𝐵}
24 df-he 43735 . 2 ({⟨𝐴, 𝐴⟩} hereditary {𝐵} ↔ ({⟨𝐴, 𝐴⟩} “ {𝐵}) ⊆ {𝐵})
2523, 24mpbir 231 1 {⟨𝐴, 𝐴⟩} hereditary {𝐵}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  wss 3976  {csn 4648  cop 4654  cima 5703   hereditary whe 43734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-he 43735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator