Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snhesn Structured version   Visualization version   GIF version

Theorem snhesn 43889
Description: Any singleton is hereditary in any singleton. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
snhesn {⟨𝐴, 𝐴⟩} hereditary {𝐵}

Proof of Theorem snhesn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . . . 7 𝑥 ∈ V
21elima3 6015 . . . . . 6 (𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) ↔ ∃𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}))
3 velsn 4589 . . . . . 6 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
42, 3imbi12i 350 . . . . 5 ((𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) → 𝑥 ∈ {𝐵}) ↔ (∃𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) → 𝑥 = 𝐵))
54albii 1820 . . . 4 (∀𝑥(𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) → 𝑥 ∈ {𝐵}) ↔ ∀𝑥(∃𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) → 𝑥 = 𝐵))
6 velsn 4589 . . . . . . . 8 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
7 opex 5402 . . . . . . . . . 10 𝑦, 𝑥⟩ ∈ V
87elsn 4588 . . . . . . . . 9 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩} ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐴⟩)
9 vex 3440 . . . . . . . . . 10 𝑦 ∈ V
109, 1opth 5414 . . . . . . . . 9 (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐴⟩ ↔ (𝑦 = 𝐴𝑥 = 𝐴))
118, 10bitri 275 . . . . . . . 8 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩} ↔ (𝑦 = 𝐴𝑥 = 𝐴))
126, 11anbi12i 628 . . . . . . 7 ((𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) ↔ (𝑦 = 𝐵 ∧ (𝑦 = 𝐴𝑥 = 𝐴)))
13 3anass 1094 . . . . . . 7 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) ↔ (𝑦 = 𝐵 ∧ (𝑦 = 𝐴𝑥 = 𝐴)))
1412, 13bitr4i 278 . . . . . 6 ((𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) ↔ (𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴))
15 simp3 1138 . . . . . . 7 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) → 𝑥 = 𝐴)
16 simp2 1137 . . . . . . 7 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) → 𝑦 = 𝐴)
17 simp1 1136 . . . . . . 7 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) → 𝑦 = 𝐵)
1815, 16, 173eqtr2d 2772 . . . . . 6 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) → 𝑥 = 𝐵)
1914, 18sylbi 217 . . . . 5 ((𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) → 𝑥 = 𝐵)
2019exlimiv 1931 . . . 4 (∃𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) → 𝑥 = 𝐵)
215, 20mpgbir 1800 . . 3 𝑥(𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) → 𝑥 ∈ {𝐵})
22 df-ss 3914 . . 3 (({⟨𝐴, 𝐴⟩} “ {𝐵}) ⊆ {𝐵} ↔ ∀𝑥(𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) → 𝑥 ∈ {𝐵}))
2321, 22mpbir 231 . 2 ({⟨𝐴, 𝐴⟩} “ {𝐵}) ⊆ {𝐵}
24 df-he 43876 . 2 ({⟨𝐴, 𝐴⟩} hereditary {𝐵} ↔ ({⟨𝐴, 𝐴⟩} “ {𝐵}) ⊆ {𝐵})
2523, 24mpbir 231 1 {⟨𝐴, 𝐴⟩} hereditary {𝐵}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111  wss 3897  {csn 4573  cop 4579  cima 5617   hereditary whe 43875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-he 43876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator