Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snhesn Structured version   Visualization version   GIF version

Theorem snhesn 40860
Description: Any singleton is hereditary in any singleton. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
snhesn {⟨𝐴, 𝐴⟩} hereditary {𝐵}

Proof of Theorem snhesn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3413 . . . . . . 7 𝑥 ∈ V
21elima3 5908 . . . . . 6 (𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) ↔ ∃𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}))
3 velsn 4538 . . . . . 6 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
42, 3imbi12i 354 . . . . 5 ((𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) → 𝑥 ∈ {𝐵}) ↔ (∃𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) → 𝑥 = 𝐵))
54albii 1821 . . . 4 (∀𝑥(𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) → 𝑥 ∈ {𝐵}) ↔ ∀𝑥(∃𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) → 𝑥 = 𝐵))
6 velsn 4538 . . . . . . . 8 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
7 opex 5324 . . . . . . . . . 10 𝑦, 𝑥⟩ ∈ V
87elsn 4537 . . . . . . . . 9 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩} ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐴⟩)
9 vex 3413 . . . . . . . . . 10 𝑦 ∈ V
109, 1opth 5336 . . . . . . . . 9 (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐴⟩ ↔ (𝑦 = 𝐴𝑥 = 𝐴))
118, 10bitri 278 . . . . . . . 8 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩} ↔ (𝑦 = 𝐴𝑥 = 𝐴))
126, 11anbi12i 629 . . . . . . 7 ((𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) ↔ (𝑦 = 𝐵 ∧ (𝑦 = 𝐴𝑥 = 𝐴)))
13 3anass 1092 . . . . . . 7 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) ↔ (𝑦 = 𝐵 ∧ (𝑦 = 𝐴𝑥 = 𝐴)))
1412, 13bitr4i 281 . . . . . 6 ((𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) ↔ (𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴))
15 simp3 1135 . . . . . . 7 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) → 𝑥 = 𝐴)
16 simp2 1134 . . . . . . 7 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) → 𝑦 = 𝐴)
17 simp1 1133 . . . . . . 7 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) → 𝑦 = 𝐵)
1815, 16, 173eqtr2d 2799 . . . . . 6 ((𝑦 = 𝐵𝑦 = 𝐴𝑥 = 𝐴) → 𝑥 = 𝐵)
1914, 18sylbi 220 . . . . 5 ((𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) → 𝑥 = 𝐵)
2019exlimiv 1931 . . . 4 (∃𝑦(𝑦 ∈ {𝐵} ∧ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐴⟩}) → 𝑥 = 𝐵)
215, 20mpgbir 1801 . . 3 𝑥(𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) → 𝑥 ∈ {𝐵})
22 dfss2 3878 . . 3 (({⟨𝐴, 𝐴⟩} “ {𝐵}) ⊆ {𝐵} ↔ ∀𝑥(𝑥 ∈ ({⟨𝐴, 𝐴⟩} “ {𝐵}) → 𝑥 ∈ {𝐵}))
2321, 22mpbir 234 . 2 ({⟨𝐴, 𝐴⟩} “ {𝐵}) ⊆ {𝐵}
24 df-he 40847 . 2 ({⟨𝐴, 𝐴⟩} hereditary {𝐵} ↔ ({⟨𝐴, 𝐴⟩} “ {𝐵}) ⊆ {𝐵})
2523, 24mpbir 234 1 {⟨𝐴, 𝐴⟩} hereditary {𝐵}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2111  wss 3858  {csn 4522  cop 4528  cima 5527   hereditary whe 40846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-v 3411  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-br 5033  df-opab 5095  df-xp 5530  df-cnv 5532  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-he 40847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator