Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffrege76 Structured version   Visualization version   GIF version

Theorem dffrege76 40278
Description: If from the two propositions that every result of an application of the procedure 𝑅 to 𝐵 has property 𝑓 and that property 𝑓 is hereditary in the 𝑅-sequence, it can be inferred, whatever 𝑓 may be, that 𝐸 has property 𝑓, then we say 𝐸 follows 𝐵 in the 𝑅-sequence. Definition 76 of [Frege1879] p. 60.

Each of 𝐵, 𝐸 and 𝑅 must be sets. (Contributed by RP, 2-Jul-2020.)

Hypotheses
Ref Expression
frege76.b 𝐵𝑈
frege76.e 𝐸𝑉
frege76.r 𝑅𝑊
Assertion
Ref Expression
dffrege76 (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)) ↔ 𝐵(t+‘𝑅)𝐸)
Distinct variable groups:   𝑓,𝑎,𝐵   𝑓,𝐸   𝑅,𝑎,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑊
Allowed substitution hints:   𝑈(𝑎)   𝐸(𝑎)   𝑉(𝑎)   𝑊(𝑎)

Proof of Theorem dffrege76
StepHypRef Expression
1 frege76.b . . 3 𝐵𝑈
2 frege76.e . . 3 𝐸𝑉
3 frege76.r . . 3 𝑅𝑊
4 brtrclfv2 40065 . . 3 ((𝐵𝑈𝐸𝑉𝑅𝑊) → (𝐵(t+‘𝑅)𝐸𝐸 {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓}))
51, 2, 3, 4mp3an 1457 . 2 (𝐵(t+‘𝑅)𝐸𝐸 {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓})
62elexi 3513 . . 3 𝐸 ∈ V
76elintab 4879 . 2 (𝐸 {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓} ↔ ∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓))
8 imaundi 6002 . . . . . . . . 9 (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅 “ {𝐵}) ∪ (𝑅𝑓))
98equncomi 4130 . . . . . . . 8 (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅𝑓) ∪ (𝑅 “ {𝐵}))
109sseq1i 3994 . . . . . . 7 ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓)
11 unss 4159 . . . . . . 7 (((𝑅𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ ((𝑅𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓)
1210, 11bitr4i 280 . . . . . 6 ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓))
13 df-he 40112 . . . . . . . 8 (𝑅 hereditary 𝑓 ↔ (𝑅𝑓) ⊆ 𝑓)
1413bicomi 226 . . . . . . 7 ((𝑅𝑓) ⊆ 𝑓𝑅 hereditary 𝑓)
15 dfss2 3954 . . . . . . . 8 ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎𝑓))
161elexi 3513 . . . . . . . . . . . 12 𝐵 ∈ V
17 vex 3497 . . . . . . . . . . . 12 𝑎 ∈ V
1816, 17elimasn 5948 . . . . . . . . . . 11 (𝑎 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝑎⟩ ∈ 𝑅)
19 df-br 5059 . . . . . . . . . . 11 (𝐵𝑅𝑎 ↔ ⟨𝐵, 𝑎⟩ ∈ 𝑅)
2018, 19bitr4i 280 . . . . . . . . . 10 (𝑎 ∈ (𝑅 “ {𝐵}) ↔ 𝐵𝑅𝑎)
2120imbi1i 352 . . . . . . . . 9 ((𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎𝑓) ↔ (𝐵𝑅𝑎𝑎𝑓))
2221albii 1816 . . . . . . . 8 (∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎𝑓) ↔ ∀𝑎(𝐵𝑅𝑎𝑎𝑓))
2315, 22bitri 277 . . . . . . 7 ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝐵𝑅𝑎𝑎𝑓))
2414, 23anbi12i 628 . . . . . 6 (((𝑅𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)))
2512, 24bitri 277 . . . . 5 ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)))
2625imbi1i 352 . . . 4 (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓) ↔ ((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)) → 𝐸𝑓))
27 impexp 453 . . . 4 (((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)) → 𝐸𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)))
2826, 27bitri 277 . . 3 (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)))
2928albii 1816 . 2 (∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓) ↔ ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)))
305, 7, 293bitrri 300 1 (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)) ↔ 𝐵(t+‘𝑅)𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1531  wcel 2110  {cab 2799  cun 3933  wss 3935  {csn 4560  cop 4566   cint 4868   class class class wbr 5058  cima 5552  cfv 6349  t+ctcl 14339   hereditary whe 40111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-seq 13364  df-trcl 14341  df-relexp 14374  df-he 40112
This theorem is referenced by:  frege77  40279  frege89  40291
  Copyright terms: Public domain W3C validator