Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffrege76 Structured version   Visualization version   GIF version

Theorem dffrege76 42285
Description: If from the two propositions that every result of an application of the procedure 𝑅 to 𝐵 has property 𝑓 and that property 𝑓 is hereditary in the 𝑅-sequence, it can be inferred, whatever 𝑓 may be, that 𝐸 has property 𝑓, then we say 𝐸 follows 𝐵 in the 𝑅-sequence. Definition 76 of [Frege1879] p. 60.

Each of 𝐵, 𝐸 and 𝑅 must be sets. (Contributed by RP, 2-Jul-2020.)

Hypotheses
Ref Expression
frege76.b 𝐵𝑈
frege76.e 𝐸𝑉
frege76.r 𝑅𝑊
Assertion
Ref Expression
dffrege76 (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)) ↔ 𝐵(t+‘𝑅)𝐸)
Distinct variable groups:   𝑓,𝑎,𝐵   𝑓,𝐸   𝑅,𝑎,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑊
Allowed substitution hints:   𝑈(𝑎)   𝐸(𝑎)   𝑉(𝑎)   𝑊(𝑎)

Proof of Theorem dffrege76
StepHypRef Expression
1 frege76.b . . 3 𝐵𝑈
2 frege76.e . . 3 𝐸𝑉
3 frege76.r . . 3 𝑅𝑊
4 brtrclfv2 42073 . . 3 ((𝐵𝑈𝐸𝑉𝑅𝑊) → (𝐵(t+‘𝑅)𝐸𝐸 {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓}))
51, 2, 3, 4mp3an 1462 . 2 (𝐵(t+‘𝑅)𝐸𝐸 {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓})
62elexi 3467 . . 3 𝐸 ∈ V
76elintab 4924 . 2 (𝐸 {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓} ↔ ∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓))
8 imaundi 6107 . . . . . . . . 9 (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅 “ {𝐵}) ∪ (𝑅𝑓))
98equncomi 4120 . . . . . . . 8 (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅𝑓) ∪ (𝑅 “ {𝐵}))
109sseq1i 3977 . . . . . . 7 ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓)
11 unss 4149 . . . . . . 7 (((𝑅𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ ((𝑅𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓)
1210, 11bitr4i 278 . . . . . 6 ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓))
13 df-he 42119 . . . . . . . 8 (𝑅 hereditary 𝑓 ↔ (𝑅𝑓) ⊆ 𝑓)
1413bicomi 223 . . . . . . 7 ((𝑅𝑓) ⊆ 𝑓𝑅 hereditary 𝑓)
15 dfss2 3935 . . . . . . . 8 ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎𝑓))
161elexi 3467 . . . . . . . . . . . 12 𝐵 ∈ V
17 vex 3452 . . . . . . . . . . . 12 𝑎 ∈ V
1816, 17elimasn 6046 . . . . . . . . . . 11 (𝑎 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝑎⟩ ∈ 𝑅)
19 df-br 5111 . . . . . . . . . . 11 (𝐵𝑅𝑎 ↔ ⟨𝐵, 𝑎⟩ ∈ 𝑅)
2018, 19bitr4i 278 . . . . . . . . . 10 (𝑎 ∈ (𝑅 “ {𝐵}) ↔ 𝐵𝑅𝑎)
2120imbi1i 350 . . . . . . . . 9 ((𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎𝑓) ↔ (𝐵𝑅𝑎𝑎𝑓))
2221albii 1822 . . . . . . . 8 (∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎𝑓) ↔ ∀𝑎(𝐵𝑅𝑎𝑎𝑓))
2315, 22bitri 275 . . . . . . 7 ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝐵𝑅𝑎𝑎𝑓))
2414, 23anbi12i 628 . . . . . 6 (((𝑅𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)))
2512, 24bitri 275 . . . . 5 ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)))
2625imbi1i 350 . . . 4 (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓) ↔ ((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)) → 𝐸𝑓))
27 impexp 452 . . . 4 (((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)) → 𝐸𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)))
2826, 27bitri 275 . . 3 (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)))
2928albii 1822 . 2 (∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓) ↔ ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)))
305, 7, 293bitrri 298 1 (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)) ↔ 𝐵(t+‘𝑅)𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540  wcel 2107  {cab 2714  cun 3913  wss 3915  {csn 4591  cop 4597   cint 4912   class class class wbr 5110  cima 5641  cfv 6501  t+ctcl 14877   hereditary whe 42118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-seq 13914  df-trcl 14879  df-relexp 14912  df-he 42119
This theorem is referenced by:  frege77  42286  frege89  42298
  Copyright terms: Public domain W3C validator