Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffrege76 Structured version   Visualization version   GIF version

Theorem dffrege76 43963
Description: If from the two propositions that every result of an application of the procedure 𝑅 to 𝐵 has property 𝑓 and that property 𝑓 is hereditary in the 𝑅-sequence, it can be inferred, whatever 𝑓 may be, that 𝐸 has property 𝑓, then we say 𝐸 follows 𝐵 in the 𝑅-sequence. Definition 76 of [Frege1879] p. 60.

Each of 𝐵, 𝐸 and 𝑅 must be sets. (Contributed by RP, 2-Jul-2020.)

Hypotheses
Ref Expression
frege76.b 𝐵𝑈
frege76.e 𝐸𝑉
frege76.r 𝑅𝑊
Assertion
Ref Expression
dffrege76 (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)) ↔ 𝐵(t+‘𝑅)𝐸)
Distinct variable groups:   𝑓,𝑎,𝐵   𝑓,𝐸   𝑅,𝑎,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑊
Allowed substitution hints:   𝑈(𝑎)   𝐸(𝑎)   𝑉(𝑎)   𝑊(𝑎)

Proof of Theorem dffrege76
StepHypRef Expression
1 frege76.b . . 3 𝐵𝑈
2 frege76.e . . 3 𝐸𝑉
3 frege76.r . . 3 𝑅𝑊
4 brtrclfv2 43751 . . 3 ((𝐵𝑈𝐸𝑉𝑅𝑊) → (𝐵(t+‘𝑅)𝐸𝐸 {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓}))
51, 2, 3, 4mp3an 1463 . 2 (𝐵(t+‘𝑅)𝐸𝐸 {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓})
62elexi 3482 . . 3 𝐸 ∈ V
76elintab 4934 . 2 (𝐸 {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓} ↔ ∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓))
8 imaundi 6138 . . . . . . . . 9 (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅 “ {𝐵}) ∪ (𝑅𝑓))
98equncomi 4135 . . . . . . . 8 (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅𝑓) ∪ (𝑅 “ {𝐵}))
109sseq1i 3987 . . . . . . 7 ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓)
11 unss 4165 . . . . . . 7 (((𝑅𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ ((𝑅𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓)
1210, 11bitr4i 278 . . . . . 6 ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓))
13 df-he 43797 . . . . . . . 8 (𝑅 hereditary 𝑓 ↔ (𝑅𝑓) ⊆ 𝑓)
1413bicomi 224 . . . . . . 7 ((𝑅𝑓) ⊆ 𝑓𝑅 hereditary 𝑓)
15 df-ss 3943 . . . . . . . 8 ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎𝑓))
161elexi 3482 . . . . . . . . . . . 12 𝐵 ∈ V
17 vex 3463 . . . . . . . . . . . 12 𝑎 ∈ V
1816, 17elimasn 6077 . . . . . . . . . . 11 (𝑎 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝑎⟩ ∈ 𝑅)
19 df-br 5120 . . . . . . . . . . 11 (𝐵𝑅𝑎 ↔ ⟨𝐵, 𝑎⟩ ∈ 𝑅)
2018, 19bitr4i 278 . . . . . . . . . 10 (𝑎 ∈ (𝑅 “ {𝐵}) ↔ 𝐵𝑅𝑎)
2120imbi1i 349 . . . . . . . . 9 ((𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎𝑓) ↔ (𝐵𝑅𝑎𝑎𝑓))
2221albii 1819 . . . . . . . 8 (∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎𝑓) ↔ ∀𝑎(𝐵𝑅𝑎𝑎𝑓))
2315, 22bitri 275 . . . . . . 7 ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝐵𝑅𝑎𝑎𝑓))
2414, 23anbi12i 628 . . . . . 6 (((𝑅𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)))
2512, 24bitri 275 . . . . 5 ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)))
2625imbi1i 349 . . . 4 (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓) ↔ ((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)) → 𝐸𝑓))
27 impexp 450 . . . 4 (((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)) → 𝐸𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)))
2826, 27bitri 275 . . 3 (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)))
2928albii 1819 . 2 (∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓) ↔ ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)))
305, 7, 293bitrri 298 1 (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)) ↔ 𝐵(t+‘𝑅)𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2108  {cab 2713  cun 3924  wss 3926  {csn 4601  cop 4607   cint 4922   class class class wbr 5119  cima 5657  cfv 6531  t+ctcl 15004   hereditary whe 43796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020  df-trcl 15006  df-relexp 15039  df-he 43797
This theorem is referenced by:  frege77  43964  frege89  43976
  Copyright terms: Public domain W3C validator