| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffrege76 | Structured version Visualization version GIF version | ||
| Description: If from the two
propositions that every result of an application of
the procedure 𝑅 to 𝐵 has property 𝑓 and
that property
𝑓 is hereditary in the 𝑅-sequence, it can be inferred,
whatever 𝑓 may be, that 𝐸 has property 𝑓, then
we say
𝐸 follows 𝐵 in the 𝑅-sequence. Definition 76 of
[Frege1879] p. 60.
Each of 𝐵, 𝐸 and 𝑅 must be sets. (Contributed by RP, 2-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege76.b | ⊢ 𝐵 ∈ 𝑈 |
| frege76.e | ⊢ 𝐸 ∈ 𝑉 |
| frege76.r | ⊢ 𝑅 ∈ 𝑊 |
| Ref | Expression |
|---|---|
| dffrege76 | ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓)) ↔ 𝐵(t+‘𝑅)𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege76.b | . . 3 ⊢ 𝐵 ∈ 𝑈 | |
| 2 | frege76.e | . . 3 ⊢ 𝐸 ∈ 𝑉 | |
| 3 | frege76.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
| 4 | brtrclfv2 43709 | . . 3 ⊢ ((𝐵 ∈ 𝑈 ∧ 𝐸 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐵(t+‘𝑅)𝐸 ↔ 𝐸 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓})) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | . 2 ⊢ (𝐵(t+‘𝑅)𝐸 ↔ 𝐸 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓}) |
| 6 | 2 | elexi 3467 | . . 3 ⊢ 𝐸 ∈ V |
| 7 | 6 | elintab 4918 | . 2 ⊢ (𝐸 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓} ↔ ∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓)) |
| 8 | imaundi 6110 | . . . . . . . . 9 ⊢ (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅 “ {𝐵}) ∪ (𝑅 “ 𝑓)) | |
| 9 | 8 | equncomi 4119 | . . . . . . . 8 ⊢ (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅 “ 𝑓) ∪ (𝑅 “ {𝐵})) |
| 10 | 9 | sseq1i 3972 | . . . . . . 7 ⊢ ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅 “ 𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓) |
| 11 | unss 4149 | . . . . . . 7 ⊢ (((𝑅 “ 𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ ((𝑅 “ 𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓) | |
| 12 | 10, 11 | bitr4i 278 | . . . . . 6 ⊢ ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅 “ 𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓)) |
| 13 | df-he 43755 | . . . . . . . 8 ⊢ (𝑅 hereditary 𝑓 ↔ (𝑅 “ 𝑓) ⊆ 𝑓) | |
| 14 | 13 | bicomi 224 | . . . . . . 7 ⊢ ((𝑅 “ 𝑓) ⊆ 𝑓 ↔ 𝑅 hereditary 𝑓) |
| 15 | df-ss 3928 | . . . . . . . 8 ⊢ ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎 ∈ 𝑓)) | |
| 16 | 1 | elexi 3467 | . . . . . . . . . . . 12 ⊢ 𝐵 ∈ V |
| 17 | vex 3448 | . . . . . . . . . . . 12 ⊢ 𝑎 ∈ V | |
| 18 | 16, 17 | elimasn 6050 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ (𝑅 “ {𝐵}) ↔ 〈𝐵, 𝑎〉 ∈ 𝑅) |
| 19 | df-br 5103 | . . . . . . . . . . 11 ⊢ (𝐵𝑅𝑎 ↔ 〈𝐵, 𝑎〉 ∈ 𝑅) | |
| 20 | 18, 19 | bitr4i 278 | . . . . . . . . . 10 ⊢ (𝑎 ∈ (𝑅 “ {𝐵}) ↔ 𝐵𝑅𝑎) |
| 21 | 20 | imbi1i 349 | . . . . . . . . 9 ⊢ ((𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎 ∈ 𝑓) ↔ (𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) |
| 22 | 21 | albii 1819 | . . . . . . . 8 ⊢ (∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎 ∈ 𝑓) ↔ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) |
| 23 | 15, 22 | bitri 275 | . . . . . . 7 ⊢ ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) |
| 24 | 14, 23 | anbi12i 628 | . . . . . 6 ⊢ (((𝑅 “ 𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓))) |
| 25 | 12, 24 | bitri 275 | . . . . 5 ⊢ ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓))) |
| 26 | 25 | imbi1i 349 | . . . 4 ⊢ (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓) ↔ ((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) → 𝐸 ∈ 𝑓)) |
| 27 | impexp 450 | . . . 4 ⊢ (((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) → 𝐸 ∈ 𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓))) | |
| 28 | 26, 27 | bitri 275 | . . 3 ⊢ (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓))) |
| 29 | 28 | albii 1819 | . 2 ⊢ (∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓) ↔ ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓))) |
| 30 | 5, 7, 29 | 3bitrri 298 | 1 ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓)) ↔ 𝐵(t+‘𝑅)𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 {cab 2707 ∪ cun 3909 ⊆ wss 3911 {csn 4585 〈cop 4591 ∩ cint 4906 class class class wbr 5102 “ cima 5634 ‘cfv 6499 t+ctcl 14927 hereditary whe 43754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-trcl 14929 df-relexp 14962 df-he 43755 |
| This theorem is referenced by: frege77 43922 frege89 43934 |
| Copyright terms: Public domain | W3C validator |