Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffrege76 Structured version   Visualization version   GIF version

Theorem dffrege76 43928
Description: If from the two propositions that every result of an application of the procedure 𝑅 to 𝐵 has property 𝑓 and that property 𝑓 is hereditary in the 𝑅-sequence, it can be inferred, whatever 𝑓 may be, that 𝐸 has property 𝑓, then we say 𝐸 follows 𝐵 in the 𝑅-sequence. Definition 76 of [Frege1879] p. 60.

Each of 𝐵, 𝐸 and 𝑅 must be sets. (Contributed by RP, 2-Jul-2020.)

Hypotheses
Ref Expression
frege76.b 𝐵𝑈
frege76.e 𝐸𝑉
frege76.r 𝑅𝑊
Assertion
Ref Expression
dffrege76 (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)) ↔ 𝐵(t+‘𝑅)𝐸)
Distinct variable groups:   𝑓,𝑎,𝐵   𝑓,𝐸   𝑅,𝑎,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑊
Allowed substitution hints:   𝑈(𝑎)   𝐸(𝑎)   𝑉(𝑎)   𝑊(𝑎)

Proof of Theorem dffrege76
StepHypRef Expression
1 frege76.b . . 3 𝐵𝑈
2 frege76.e . . 3 𝐸𝑉
3 frege76.r . . 3 𝑅𝑊
4 brtrclfv2 43716 . . 3 ((𝐵𝑈𝐸𝑉𝑅𝑊) → (𝐵(t+‘𝑅)𝐸𝐸 {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓}))
51, 2, 3, 4mp3an 1460 . 2 (𝐵(t+‘𝑅)𝐸𝐸 {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓})
62elexi 3500 . . 3 𝐸 ∈ V
76elintab 4962 . 2 (𝐸 {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓} ↔ ∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓))
8 imaundi 6171 . . . . . . . . 9 (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅 “ {𝐵}) ∪ (𝑅𝑓))
98equncomi 4169 . . . . . . . 8 (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅𝑓) ∪ (𝑅 “ {𝐵}))
109sseq1i 4023 . . . . . . 7 ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓)
11 unss 4199 . . . . . . 7 (((𝑅𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ ((𝑅𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓)
1210, 11bitr4i 278 . . . . . 6 ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓))
13 df-he 43762 . . . . . . . 8 (𝑅 hereditary 𝑓 ↔ (𝑅𝑓) ⊆ 𝑓)
1413bicomi 224 . . . . . . 7 ((𝑅𝑓) ⊆ 𝑓𝑅 hereditary 𝑓)
15 df-ss 3979 . . . . . . . 8 ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎𝑓))
161elexi 3500 . . . . . . . . . . . 12 𝐵 ∈ V
17 vex 3481 . . . . . . . . . . . 12 𝑎 ∈ V
1816, 17elimasn 6109 . . . . . . . . . . 11 (𝑎 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝑎⟩ ∈ 𝑅)
19 df-br 5148 . . . . . . . . . . 11 (𝐵𝑅𝑎 ↔ ⟨𝐵, 𝑎⟩ ∈ 𝑅)
2018, 19bitr4i 278 . . . . . . . . . 10 (𝑎 ∈ (𝑅 “ {𝐵}) ↔ 𝐵𝑅𝑎)
2120imbi1i 349 . . . . . . . . 9 ((𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎𝑓) ↔ (𝐵𝑅𝑎𝑎𝑓))
2221albii 1815 . . . . . . . 8 (∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎𝑓) ↔ ∀𝑎(𝐵𝑅𝑎𝑎𝑓))
2315, 22bitri 275 . . . . . . 7 ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝐵𝑅𝑎𝑎𝑓))
2414, 23anbi12i 628 . . . . . 6 (((𝑅𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)))
2512, 24bitri 275 . . . . 5 ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)))
2625imbi1i 349 . . . 4 (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓) ↔ ((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)) → 𝐸𝑓))
27 impexp 450 . . . 4 (((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎𝑎𝑓)) → 𝐸𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)))
2826, 27bitri 275 . . 3 (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)))
2928albii 1815 . 2 (∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓𝐸𝑓) ↔ ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)))
305, 7, 293bitrri 298 1 (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎𝑎𝑓) → 𝐸𝑓)) ↔ 𝐵(t+‘𝑅)𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1534  wcel 2105  {cab 2711  cun 3960  wss 3962  {csn 4630  cop 4636   cint 4950   class class class wbr 5147  cima 5691  cfv 6562  t+ctcl 15020   hereditary whe 43761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-seq 14039  df-trcl 15022  df-relexp 15055  df-he 43762
This theorem is referenced by:  frege77  43929  frege89  43941
  Copyright terms: Public domain W3C validator