![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffrege76 | Structured version Visualization version GIF version |
Description: If from the two
propositions that every result of an application of
the procedure 𝑅 to 𝐵 has property 𝑓 and
that property
𝑓 is hereditary in the 𝑅-sequence, it can be inferred,
whatever 𝑓 may be, that 𝐸 has property 𝑓, then
we say
𝐸 follows 𝐵 in the 𝑅-sequence. Definition 76 of
[Frege1879] p. 60.
Each of 𝐵, 𝐸 and 𝑅 must be sets. (Contributed by RP, 2-Jul-2020.) |
Ref | Expression |
---|---|
frege76.b | ⊢ 𝐵 ∈ 𝑈 |
frege76.e | ⊢ 𝐸 ∈ 𝑉 |
frege76.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
dffrege76 | ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓)) ↔ 𝐵(t+‘𝑅)𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege76.b | . . 3 ⊢ 𝐵 ∈ 𝑈 | |
2 | frege76.e | . . 3 ⊢ 𝐸 ∈ 𝑉 | |
3 | frege76.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
4 | brtrclfv2 42073 | . . 3 ⊢ ((𝐵 ∈ 𝑈 ∧ 𝐸 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐵(t+‘𝑅)𝐸 ↔ 𝐸 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓})) | |
5 | 1, 2, 3, 4 | mp3an 1462 | . 2 ⊢ (𝐵(t+‘𝑅)𝐸 ↔ 𝐸 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓}) |
6 | 2 | elexi 3467 | . . 3 ⊢ 𝐸 ∈ V |
7 | 6 | elintab 4924 | . 2 ⊢ (𝐸 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓} ↔ ∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓)) |
8 | imaundi 6107 | . . . . . . . . 9 ⊢ (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅 “ {𝐵}) ∪ (𝑅 “ 𝑓)) | |
9 | 8 | equncomi 4120 | . . . . . . . 8 ⊢ (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅 “ 𝑓) ∪ (𝑅 “ {𝐵})) |
10 | 9 | sseq1i 3977 | . . . . . . 7 ⊢ ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅 “ 𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓) |
11 | unss 4149 | . . . . . . 7 ⊢ (((𝑅 “ 𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ ((𝑅 “ 𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓) | |
12 | 10, 11 | bitr4i 278 | . . . . . 6 ⊢ ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅 “ 𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓)) |
13 | df-he 42119 | . . . . . . . 8 ⊢ (𝑅 hereditary 𝑓 ↔ (𝑅 “ 𝑓) ⊆ 𝑓) | |
14 | 13 | bicomi 223 | . . . . . . 7 ⊢ ((𝑅 “ 𝑓) ⊆ 𝑓 ↔ 𝑅 hereditary 𝑓) |
15 | dfss2 3935 | . . . . . . . 8 ⊢ ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎 ∈ 𝑓)) | |
16 | 1 | elexi 3467 | . . . . . . . . . . . 12 ⊢ 𝐵 ∈ V |
17 | vex 3452 | . . . . . . . . . . . 12 ⊢ 𝑎 ∈ V | |
18 | 16, 17 | elimasn 6046 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝑎⟩ ∈ 𝑅) |
19 | df-br 5111 | . . . . . . . . . . 11 ⊢ (𝐵𝑅𝑎 ↔ ⟨𝐵, 𝑎⟩ ∈ 𝑅) | |
20 | 18, 19 | bitr4i 278 | . . . . . . . . . 10 ⊢ (𝑎 ∈ (𝑅 “ {𝐵}) ↔ 𝐵𝑅𝑎) |
21 | 20 | imbi1i 350 | . . . . . . . . 9 ⊢ ((𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎 ∈ 𝑓) ↔ (𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) |
22 | 21 | albii 1822 | . . . . . . . 8 ⊢ (∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎 ∈ 𝑓) ↔ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) |
23 | 15, 22 | bitri 275 | . . . . . . 7 ⊢ ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) |
24 | 14, 23 | anbi12i 628 | . . . . . 6 ⊢ (((𝑅 “ 𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓))) |
25 | 12, 24 | bitri 275 | . . . . 5 ⊢ ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓))) |
26 | 25 | imbi1i 350 | . . . 4 ⊢ (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓) ↔ ((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) → 𝐸 ∈ 𝑓)) |
27 | impexp 452 | . . . 4 ⊢ (((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) → 𝐸 ∈ 𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓))) | |
28 | 26, 27 | bitri 275 | . . 3 ⊢ (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓))) |
29 | 28 | albii 1822 | . 2 ⊢ (∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓) ↔ ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓))) |
30 | 5, 7, 29 | 3bitrri 298 | 1 ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓)) ↔ 𝐵(t+‘𝑅)𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 ∈ wcel 2107 {cab 2714 ∪ cun 3913 ⊆ wss 3915 {csn 4591 ⟨cop 4597 ∩ cint 4912 class class class wbr 5110 “ cima 5641 ‘cfv 6501 t+ctcl 14877 hereditary whe 42118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-nn 12161 df-2 12223 df-n0 12421 df-z 12507 df-uz 12771 df-seq 13914 df-trcl 14879 df-relexp 14912 df-he 42119 |
This theorem is referenced by: frege77 42286 frege89 42298 |
Copyright terms: Public domain | W3C validator |