Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffrege76 | Structured version Visualization version GIF version |
Description: If from the two
propositions that every result of an application of
the procedure 𝑅 to 𝐵 has property 𝑓 and
that property
𝑓 is hereditary in the 𝑅-sequence, it can be inferred,
whatever 𝑓 may be, that 𝐸 has property 𝑓, then
we say
𝐸 follows 𝐵 in the 𝑅-sequence. Definition 76 of
[Frege1879] p. 60.
Each of 𝐵, 𝐸 and 𝑅 must be sets. (Contributed by RP, 2-Jul-2020.) |
Ref | Expression |
---|---|
frege76.b | ⊢ 𝐵 ∈ 𝑈 |
frege76.e | ⊢ 𝐸 ∈ 𝑉 |
frege76.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
dffrege76 | ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓)) ↔ 𝐵(t+‘𝑅)𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege76.b | . . 3 ⊢ 𝐵 ∈ 𝑈 | |
2 | frege76.e | . . 3 ⊢ 𝐸 ∈ 𝑉 | |
3 | frege76.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
4 | brtrclfv2 41224 | . . 3 ⊢ ((𝐵 ∈ 𝑈 ∧ 𝐸 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐵(t+‘𝑅)𝐸 ↔ 𝐸 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓})) | |
5 | 1, 2, 3, 4 | mp3an 1459 | . 2 ⊢ (𝐵(t+‘𝑅)𝐸 ↔ 𝐸 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓}) |
6 | 2 | elexi 3441 | . . 3 ⊢ 𝐸 ∈ V |
7 | 6 | elintab 4887 | . 2 ⊢ (𝐸 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓} ↔ ∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓)) |
8 | imaundi 6042 | . . . . . . . . 9 ⊢ (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅 “ {𝐵}) ∪ (𝑅 “ 𝑓)) | |
9 | 8 | equncomi 4085 | . . . . . . . 8 ⊢ (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅 “ 𝑓) ∪ (𝑅 “ {𝐵})) |
10 | 9 | sseq1i 3945 | . . . . . . 7 ⊢ ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅 “ 𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓) |
11 | unss 4114 | . . . . . . 7 ⊢ (((𝑅 “ 𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ ((𝑅 “ 𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓) | |
12 | 10, 11 | bitr4i 277 | . . . . . 6 ⊢ ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅 “ 𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓)) |
13 | df-he 41270 | . . . . . . . 8 ⊢ (𝑅 hereditary 𝑓 ↔ (𝑅 “ 𝑓) ⊆ 𝑓) | |
14 | 13 | bicomi 223 | . . . . . . 7 ⊢ ((𝑅 “ 𝑓) ⊆ 𝑓 ↔ 𝑅 hereditary 𝑓) |
15 | dfss2 3903 | . . . . . . . 8 ⊢ ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎 ∈ 𝑓)) | |
16 | 1 | elexi 3441 | . . . . . . . . . . . 12 ⊢ 𝐵 ∈ V |
17 | vex 3426 | . . . . . . . . . . . 12 ⊢ 𝑎 ∈ V | |
18 | 16, 17 | elimasn 5986 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ (𝑅 “ {𝐵}) ↔ 〈𝐵, 𝑎〉 ∈ 𝑅) |
19 | df-br 5071 | . . . . . . . . . . 11 ⊢ (𝐵𝑅𝑎 ↔ 〈𝐵, 𝑎〉 ∈ 𝑅) | |
20 | 18, 19 | bitr4i 277 | . . . . . . . . . 10 ⊢ (𝑎 ∈ (𝑅 “ {𝐵}) ↔ 𝐵𝑅𝑎) |
21 | 20 | imbi1i 349 | . . . . . . . . 9 ⊢ ((𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎 ∈ 𝑓) ↔ (𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) |
22 | 21 | albii 1823 | . . . . . . . 8 ⊢ (∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎 ∈ 𝑓) ↔ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) |
23 | 15, 22 | bitri 274 | . . . . . . 7 ⊢ ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) |
24 | 14, 23 | anbi12i 626 | . . . . . 6 ⊢ (((𝑅 “ 𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓))) |
25 | 12, 24 | bitri 274 | . . . . 5 ⊢ ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓))) |
26 | 25 | imbi1i 349 | . . . 4 ⊢ (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓) ↔ ((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) → 𝐸 ∈ 𝑓)) |
27 | impexp 450 | . . . 4 ⊢ (((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) → 𝐸 ∈ 𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓))) | |
28 | 26, 27 | bitri 274 | . . 3 ⊢ (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓))) |
29 | 28 | albii 1823 | . 2 ⊢ (∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓) ↔ ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓))) |
30 | 5, 7, 29 | 3bitrri 297 | 1 ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓)) ↔ 𝐵(t+‘𝑅)𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 {cab 2715 ∪ cun 3881 ⊆ wss 3883 {csn 4558 〈cop 4564 ∩ cint 4876 class class class wbr 5070 “ cima 5583 ‘cfv 6418 t+ctcl 14624 hereditary whe 41269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-trcl 14626 df-relexp 14659 df-he 41270 |
This theorem is referenced by: frege77 41437 frege89 41449 |
Copyright terms: Public domain | W3C validator |