![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1limg | Structured version Visualization version GIF version |
Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1limg | ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r1 9761 | . . . . 5 ⊢ 𝑅1 = rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) | |
2 | 1 | dmeqi 5903 | . . . 4 ⊢ dom 𝑅1 = dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) |
3 | 2 | eleq2i 2823 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)) |
4 | rdglimg 8427 | . . 3 ⊢ ((𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)) | |
5 | 3, 4 | sylanb 579 | . 2 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)) |
6 | 1 | fveq1i 6891 | . 2 ⊢ (𝑅1‘𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) |
7 | r1funlim 9763 | . . . . 5 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
8 | 7 | simpli 482 | . . . 4 ⊢ Fun 𝑅1 |
9 | funiunfv 7249 | . . . 4 ⊢ (Fun 𝑅1 → ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (𝑅1 “ 𝐴)) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (𝑅1 “ 𝐴) |
11 | 1 | imaeq1i 6055 | . . . 4 ⊢ (𝑅1 “ 𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
12 | 11 | unieqi 4920 | . . 3 ⊢ ∪ (𝑅1 “ 𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
13 | 10, 12 | eqtri 2758 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
14 | 5, 6, 13 | 3eqtr4g 2795 | 1 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ∅c0 4321 𝒫 cpw 4601 ∪ cuni 4907 ∪ ciun 4996 ↦ cmpt 5230 dom cdm 5675 “ cima 5678 Lim wlim 6364 Fun wfun 6536 ‘cfv 6542 reccrdg 8411 𝑅1cr1 9759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-r1 9761 |
This theorem is referenced by: r1lim 9769 r1tr 9773 r1ordg 9775 r1pwss 9781 r1val1 9783 |
Copyright terms: Public domain | W3C validator |