MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1limg Structured version   Visualization version   GIF version

Theorem r1limg 9659
Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1limg ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem r1limg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-r1 9652 . . . . 5 𝑅1 = rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)
21dmeqi 5839 . . . 4 dom 𝑅1 = dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)
32eleq2i 2823 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅))
4 rdglimg 8339 . . 3 ((𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴))
53, 4sylanb 581 . 2 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴))
61fveq1i 6818 . 2 (𝑅1𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴)
7 r1funlim 9654 . . . . 5 (Fun 𝑅1 ∧ Lim dom 𝑅1)
87simpli 483 . . . 4 Fun 𝑅1
9 funiunfv 7177 . . . 4 (Fun 𝑅1 𝑥𝐴 (𝑅1𝑥) = (𝑅1𝐴))
108, 9ax-mp 5 . . 3 𝑥𝐴 (𝑅1𝑥) = (𝑅1𝐴)
111imaeq1i 6001 . . . 4 (𝑅1𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)
1211unieqi 4866 . . 3 (𝑅1𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)
1310, 12eqtri 2754 . 2 𝑥𝐴 (𝑅1𝑥) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)
145, 6, 133eqtr4g 2791 1 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4278  𝒫 cpw 4545   cuni 4854   ciun 4936  cmpt 5167  dom cdm 5611  cima 5614  Lim wlim 6302  Fun wfun 6470  cfv 6476  reccrdg 8323  𝑅1cr1 9650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-r1 9652
This theorem is referenced by:  r1lim  9660  r1tr  9664  r1ordg  9666  r1pwss  9672  r1val1  9674
  Copyright terms: Public domain W3C validator