Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r1limg | Structured version Visualization version GIF version |
Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1limg | ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r1 9453 | . . . . 5 ⊢ 𝑅1 = rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) | |
2 | 1 | dmeqi 5802 | . . . 4 ⊢ dom 𝑅1 = dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) |
3 | 2 | eleq2i 2830 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)) |
4 | rdglimg 8227 | . . 3 ⊢ ((𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)) | |
5 | 3, 4 | sylanb 580 | . 2 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)) |
6 | 1 | fveq1i 6757 | . 2 ⊢ (𝑅1‘𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) |
7 | r1funlim 9455 | . . . . 5 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
8 | 7 | simpli 483 | . . . 4 ⊢ Fun 𝑅1 |
9 | funiunfv 7103 | . . . 4 ⊢ (Fun 𝑅1 → ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (𝑅1 “ 𝐴)) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (𝑅1 “ 𝐴) |
11 | 1 | imaeq1i 5955 | . . . 4 ⊢ (𝑅1 “ 𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
12 | 11 | unieqi 4849 | . . 3 ⊢ ∪ (𝑅1 “ 𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
13 | 10, 12 | eqtri 2766 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
14 | 5, 6, 13 | 3eqtr4g 2804 | 1 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 𝒫 cpw 4530 ∪ cuni 4836 ∪ ciun 4921 ↦ cmpt 5153 dom cdm 5580 “ cima 5583 Lim wlim 6252 Fun wfun 6412 ‘cfv 6418 reccrdg 8211 𝑅1cr1 9451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 |
This theorem is referenced by: r1lim 9461 r1tr 9465 r1ordg 9467 r1pwss 9473 r1val1 9475 |
Copyright terms: Public domain | W3C validator |