| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1limg | Structured version Visualization version GIF version | ||
| Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1limg | ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r1 9652 | . . . . 5 ⊢ 𝑅1 = rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) | |
| 2 | 1 | dmeqi 5839 | . . . 4 ⊢ dom 𝑅1 = dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) |
| 3 | 2 | eleq2i 2823 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)) |
| 4 | rdglimg 8339 | . . 3 ⊢ ((𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)) | |
| 5 | 3, 4 | sylanb 581 | . 2 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)) |
| 6 | 1 | fveq1i 6818 | . 2 ⊢ (𝑅1‘𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) |
| 7 | r1funlim 9654 | . . . . 5 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 8 | 7 | simpli 483 | . . . 4 ⊢ Fun 𝑅1 |
| 9 | funiunfv 7177 | . . . 4 ⊢ (Fun 𝑅1 → ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (𝑅1 “ 𝐴)) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (𝑅1 “ 𝐴) |
| 11 | 1 | imaeq1i 6001 | . . . 4 ⊢ (𝑅1 “ 𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
| 12 | 11 | unieqi 4866 | . . 3 ⊢ ∪ (𝑅1 “ 𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
| 13 | 10, 12 | eqtri 2754 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
| 14 | 5, 6, 13 | 3eqtr4g 2791 | 1 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 𝒫 cpw 4545 ∪ cuni 4854 ∪ ciun 4936 ↦ cmpt 5167 dom cdm 5611 “ cima 5614 Lim wlim 6302 Fun wfun 6470 ‘cfv 6476 reccrdg 8323 𝑅1cr1 9650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-r1 9652 |
| This theorem is referenced by: r1lim 9660 r1tr 9664 r1ordg 9666 r1pwss 9672 r1val1 9674 |
| Copyright terms: Public domain | W3C validator |