MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1limg Structured version   Visualization version   GIF version

Theorem r1limg 9724
Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1limg ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem r1limg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-r1 9717 . . . . 5 𝑅1 = rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)
21dmeqi 5868 . . . 4 dom 𝑅1 = dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)
32eleq2i 2820 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅))
4 rdglimg 8393 . . 3 ((𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴))
53, 4sylanb 581 . 2 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴))
61fveq1i 6859 . 2 (𝑅1𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴)
7 r1funlim 9719 . . . . 5 (Fun 𝑅1 ∧ Lim dom 𝑅1)
87simpli 483 . . . 4 Fun 𝑅1
9 funiunfv 7222 . . . 4 (Fun 𝑅1 𝑥𝐴 (𝑅1𝑥) = (𝑅1𝐴))
108, 9ax-mp 5 . . 3 𝑥𝐴 (𝑅1𝑥) = (𝑅1𝐴)
111imaeq1i 6028 . . . 4 (𝑅1𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)
1211unieqi 4883 . . 3 (𝑅1𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)
1310, 12eqtri 2752 . 2 𝑥𝐴 (𝑅1𝑥) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)
145, 6, 133eqtr4g 2789 1 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  𝒫 cpw 4563   cuni 4871   ciun 4955  cmpt 5188  dom cdm 5638  cima 5641  Lim wlim 6333  Fun wfun 6505  cfv 6511  reccrdg 8377  𝑅1cr1 9715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-r1 9717
This theorem is referenced by:  r1lim  9725  r1tr  9729  r1ordg  9731  r1pwss  9737  r1val1  9739
  Copyright terms: Public domain W3C validator