![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1limg | Structured version Visualization version GIF version |
Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1limg | ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r1 9833 | . . . . 5 ⊢ 𝑅1 = rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) | |
2 | 1 | dmeqi 5929 | . . . 4 ⊢ dom 𝑅1 = dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) |
3 | 2 | eleq2i 2836 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)) |
4 | rdglimg 8481 | . . 3 ⊢ ((𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)) | |
5 | 3, 4 | sylanb 580 | . 2 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)) |
6 | 1 | fveq1i 6921 | . 2 ⊢ (𝑅1‘𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) |
7 | r1funlim 9835 | . . . . 5 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
8 | 7 | simpli 483 | . . . 4 ⊢ Fun 𝑅1 |
9 | funiunfv 7285 | . . . 4 ⊢ (Fun 𝑅1 → ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (𝑅1 “ 𝐴)) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (𝑅1 “ 𝐴) |
11 | 1 | imaeq1i 6086 | . . . 4 ⊢ (𝑅1 “ 𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
12 | 11 | unieqi 4943 | . . 3 ⊢ ∪ (𝑅1 “ 𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
13 | 10, 12 | eqtri 2768 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
14 | 5, 6, 13 | 3eqtr4g 2805 | 1 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 ∪ ciun 5015 ↦ cmpt 5249 dom cdm 5700 “ cima 5703 Lim wlim 6396 Fun wfun 6567 ‘cfv 6573 reccrdg 8465 𝑅1cr1 9831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-r1 9833 |
This theorem is referenced by: r1lim 9841 r1tr 9845 r1ordg 9847 r1pwss 9853 r1val1 9855 |
Copyright terms: Public domain | W3C validator |