| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1limg | Structured version Visualization version GIF version | ||
| Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1limg | ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r1 9783 | . . . . 5 ⊢ 𝑅1 = rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) | |
| 2 | 1 | dmeqi 5889 | . . . 4 ⊢ dom 𝑅1 = dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) |
| 3 | 2 | eleq2i 2827 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)) |
| 4 | rdglimg 8444 | . . 3 ⊢ ((𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)) | |
| 5 | 3, 4 | sylanb 581 | . 2 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)) |
| 6 | 1 | fveq1i 6882 | . 2 ⊢ (𝑅1‘𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) |
| 7 | r1funlim 9785 | . . . . 5 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 8 | 7 | simpli 483 | . . . 4 ⊢ Fun 𝑅1 |
| 9 | funiunfv 7245 | . . . 4 ⊢ (Fun 𝑅1 → ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (𝑅1 “ 𝐴)) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (𝑅1 “ 𝐴) |
| 11 | 1 | imaeq1i 6049 | . . . 4 ⊢ (𝑅1 “ 𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
| 12 | 11 | unieqi 4900 | . . 3 ⊢ ∪ (𝑅1 “ 𝐴) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
| 13 | 10, 12 | eqtri 2759 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) = ∪ (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴) |
| 14 | 5, 6, 13 | 3eqtr4g 2796 | 1 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 𝒫 cpw 4580 ∪ cuni 4888 ∪ ciun 4972 ↦ cmpt 5206 dom cdm 5659 “ cima 5662 Lim wlim 6358 Fun wfun 6530 ‘cfv 6536 reccrdg 8428 𝑅1cr1 9781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-r1 9783 |
| This theorem is referenced by: r1lim 9791 r1tr 9795 r1ordg 9797 r1pwss 9803 r1val1 9805 |
| Copyright terms: Public domain | W3C validator |