MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1val1 Structured version   Visualization version   GIF version

Theorem r1val1 9475
Description: The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of [Enderton] p. 202. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1val1 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem r1val1
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → 𝐴 = ∅)
21fveq2d 6760 . . . . 5 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) = (𝑅1‘∅))
3 r10 9457 . . . . 5 (𝑅1‘∅) = ∅
42, 3eqtrdi 2795 . . . 4 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) = ∅)
5 0ss 4327 . . . . 5 ∅ ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)
65a1i 11 . . . 4 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → ∅ ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
74, 6eqsstrd 3955 . . 3 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
8 nfv 1918 . . . . 5 𝑥 𝐴 ∈ dom 𝑅1
9 nfcv 2906 . . . . . 6 𝑥(𝑅1𝐴)
10 nfiu1 4955 . . . . . 6 𝑥 𝑥𝐴 𝒫 (𝑅1𝑥)
119, 10nfss 3909 . . . . 5 𝑥(𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)
12 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝐴 = suc 𝑥)
1312fveq2d 6760 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) = (𝑅1‘suc 𝑥))
14 eleq1 2826 . . . . . . . . . . . 12 (𝐴 = suc 𝑥 → (𝐴 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
1514biimpac 478 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → suc 𝑥 ∈ dom 𝑅1)
16 r1funlim 9455 . . . . . . . . . . . . 13 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1716simpri 485 . . . . . . . . . . . 12 Lim dom 𝑅1
18 limsuc 7671 . . . . . . . . . . . 12 (Lim dom 𝑅1 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
1917, 18ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1)
2015, 19sylibr 233 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝑥 ∈ dom 𝑅1)
21 r1sucg 9458 . . . . . . . . . 10 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2220, 21syl 17 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2313, 22eqtrd 2778 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) = 𝒫 (𝑅1𝑥))
24 vex 3426 . . . . . . . . . . 11 𝑥 ∈ V
2524sucid 6330 . . . . . . . . . 10 𝑥 ∈ suc 𝑥
2625, 12eleqtrrid 2846 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝑥𝐴)
27 ssiun2 4973 . . . . . . . . 9 (𝑥𝐴 → 𝒫 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
2826, 27syl 17 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝒫 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
2923, 28eqsstrd 3955 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
3029ex 412 . . . . . 6 (𝐴 ∈ dom 𝑅1 → (𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)))
3130a1d 25 . . . . 5 (𝐴 ∈ dom 𝑅1 → (𝑥 ∈ On → (𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))))
328, 11, 31rexlimd 3245 . . . 4 (𝐴 ∈ dom 𝑅1 → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)))
3332imp 406 . . 3 ((𝐴 ∈ dom 𝑅1 ∧ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
34 r1limg 9460 . . . . 5 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
35 r1tr 9465 . . . . . . . . 9 Tr (𝑅1𝑥)
36 dftr4 5192 . . . . . . . . 9 (Tr (𝑅1𝑥) ↔ (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
3735, 36mpbi 229 . . . . . . . 8 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥)
3837a1i 11 . . . . . . 7 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
3938ralrimivw 3108 . . . . . 6 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → ∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
40 ss2iun 4939 . . . . . 6 (∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥) → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4139, 40syl 17 . . . . 5 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4234, 41eqsstrd 3955 . . . 4 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4342adantrl 712 . . 3 ((𝐴 ∈ dom 𝑅1 ∧ (𝐴 ∈ V ∧ Lim 𝐴)) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
44 limord 6310 . . . . . . 7 (Lim dom 𝑅1 → Ord dom 𝑅1)
4517, 44ax-mp 5 . . . . . 6 Ord dom 𝑅1
46 ordsson 7610 . . . . . 6 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
4745, 46ax-mp 5 . . . . 5 dom 𝑅1 ⊆ On
4847sseli 3913 . . . 4 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
49 onzsl 7668 . . . 4 (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
5048, 49sylib 217 . . 3 (𝐴 ∈ dom 𝑅1 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
517, 33, 43, 50mpjao3dan 1429 . 2 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
52 ordtr1 6294 . . . . . . . 8 (Ord dom 𝑅1 → ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
5345, 52ax-mp 5 . . . . . . 7 ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
5453ancoms 458 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 ∈ dom 𝑅1)
5554, 21syl 17 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
56 simpr 484 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥𝐴)
57 ordelord 6273 . . . . . . . . . 10 ((Ord dom 𝑅1𝐴 ∈ dom 𝑅1) → Ord 𝐴)
5845, 57mpan 686 . . . . . . . . 9 (𝐴 ∈ dom 𝑅1 → Ord 𝐴)
5958adantr 480 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → Ord 𝐴)
60 ordelsuc 7642 . . . . . . . 8 ((𝑥𝐴 ∧ Ord 𝐴) → (𝑥𝐴 ↔ suc 𝑥𝐴))
6156, 59, 60syl2anc 583 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑥𝐴 ↔ suc 𝑥𝐴))
6256, 61mpbid 231 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → suc 𝑥𝐴)
6354, 19sylib 217 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → suc 𝑥 ∈ dom 𝑅1)
64 simpl 482 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝐴 ∈ dom 𝑅1)
65 r1ord3g 9468 . . . . . . 7 ((suc 𝑥 ∈ dom 𝑅1𝐴 ∈ dom 𝑅1) → (suc 𝑥𝐴 → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴)))
6663, 64, 65syl2anc 583 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (suc 𝑥𝐴 → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴)))
6762, 66mpd 15 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴))
6855, 67eqsstrrd 3956 . . . 4 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
6968ralrimiva 3107 . . 3 (𝐴 ∈ dom 𝑅1 → ∀𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
70 iunss 4971 . . 3 ( 𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴) ↔ ∀𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
7169, 70sylibr 233 . 2 (𝐴 ∈ dom 𝑅1 𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
7251, 71eqssd 3934 1 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3o 1084   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530   ciun 4921  Tr wtr 5187  dom cdm 5580  Ord word 6250  Oncon0 6251  Lim wlim 6252  suc csuc 6253  Fun wfun 6412  cfv 6418  𝑅1cr1 9451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453
This theorem is referenced by:  rankr1ai  9487  r1val3  9527
  Copyright terms: Public domain W3C validator