MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1val1 Structured version   Visualization version   GIF version

Theorem r1val1 9739
Description: The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of [Enderton] p. 202. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1val1 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem r1val1
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → 𝐴 = ∅)
21fveq2d 6862 . . . . 5 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) = (𝑅1‘∅))
3 r10 9721 . . . . 5 (𝑅1‘∅) = ∅
42, 3eqtrdi 2780 . . . 4 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) = ∅)
5 0ss 4363 . . . . 5 ∅ ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)
65a1i 11 . . . 4 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → ∅ ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
74, 6eqsstrd 3981 . . 3 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
8 nfv 1914 . . . . 5 𝑥 𝐴 ∈ dom 𝑅1
9 nfcv 2891 . . . . . 6 𝑥(𝑅1𝐴)
10 nfiu1 4991 . . . . . 6 𝑥 𝑥𝐴 𝒫 (𝑅1𝑥)
119, 10nfss 3939 . . . . 5 𝑥(𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)
12 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝐴 = suc 𝑥)
1312fveq2d 6862 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) = (𝑅1‘suc 𝑥))
14 eleq1 2816 . . . . . . . . . . . 12 (𝐴 = suc 𝑥 → (𝐴 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
1514biimpac 478 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → suc 𝑥 ∈ dom 𝑅1)
16 r1funlim 9719 . . . . . . . . . . . . 13 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1716simpri 485 . . . . . . . . . . . 12 Lim dom 𝑅1
18 limsuc 7825 . . . . . . . . . . . 12 (Lim dom 𝑅1 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
1917, 18ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1)
2015, 19sylibr 234 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝑥 ∈ dom 𝑅1)
21 r1sucg 9722 . . . . . . . . . 10 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2220, 21syl 17 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2313, 22eqtrd 2764 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) = 𝒫 (𝑅1𝑥))
24 vex 3451 . . . . . . . . . . 11 𝑥 ∈ V
2524sucid 6416 . . . . . . . . . 10 𝑥 ∈ suc 𝑥
2625, 12eleqtrrid 2835 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝑥𝐴)
27 ssiun2 5011 . . . . . . . . 9 (𝑥𝐴 → 𝒫 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
2826, 27syl 17 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝒫 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
2923, 28eqsstrd 3981 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
3029ex 412 . . . . . 6 (𝐴 ∈ dom 𝑅1 → (𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)))
3130a1d 25 . . . . 5 (𝐴 ∈ dom 𝑅1 → (𝑥 ∈ On → (𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))))
328, 11, 31rexlimd 3244 . . . 4 (𝐴 ∈ dom 𝑅1 → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)))
3332imp 406 . . 3 ((𝐴 ∈ dom 𝑅1 ∧ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
34 r1limg 9724 . . . . 5 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
35 r1tr 9729 . . . . . . . . 9 Tr (𝑅1𝑥)
36 dftr4 5221 . . . . . . . . 9 (Tr (𝑅1𝑥) ↔ (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
3735, 36mpbi 230 . . . . . . . 8 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥)
3837a1i 11 . . . . . . 7 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
3938ralrimivw 3129 . . . . . 6 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → ∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
40 ss2iun 4974 . . . . . 6 (∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥) → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4139, 40syl 17 . . . . 5 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4234, 41eqsstrd 3981 . . . 4 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4342adantrl 716 . . 3 ((𝐴 ∈ dom 𝑅1 ∧ (𝐴 ∈ V ∧ Lim 𝐴)) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
44 limord 6393 . . . . . . 7 (Lim dom 𝑅1 → Ord dom 𝑅1)
4517, 44ax-mp 5 . . . . . 6 Ord dom 𝑅1
46 ordsson 7759 . . . . . 6 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
4745, 46ax-mp 5 . . . . 5 dom 𝑅1 ⊆ On
4847sseli 3942 . . . 4 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
49 onzsl 7822 . . . 4 (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
5048, 49sylib 218 . . 3 (𝐴 ∈ dom 𝑅1 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
517, 33, 43, 50mpjao3dan 1434 . 2 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
52 ordtr1 6376 . . . . . . . 8 (Ord dom 𝑅1 → ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
5345, 52ax-mp 5 . . . . . . 7 ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
5453ancoms 458 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 ∈ dom 𝑅1)
5554, 21syl 17 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
56 simpr 484 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥𝐴)
57 ordelord 6354 . . . . . . . . . 10 ((Ord dom 𝑅1𝐴 ∈ dom 𝑅1) → Ord 𝐴)
5845, 57mpan 690 . . . . . . . . 9 (𝐴 ∈ dom 𝑅1 → Ord 𝐴)
5958adantr 480 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → Ord 𝐴)
60 ordelsuc 7795 . . . . . . . 8 ((𝑥𝐴 ∧ Ord 𝐴) → (𝑥𝐴 ↔ suc 𝑥𝐴))
6156, 59, 60syl2anc 584 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑥𝐴 ↔ suc 𝑥𝐴))
6256, 61mpbid 232 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → suc 𝑥𝐴)
6354, 19sylib 218 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → suc 𝑥 ∈ dom 𝑅1)
64 simpl 482 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝐴 ∈ dom 𝑅1)
65 r1ord3g 9732 . . . . . . 7 ((suc 𝑥 ∈ dom 𝑅1𝐴 ∈ dom 𝑅1) → (suc 𝑥𝐴 → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴)))
6663, 64, 65syl2anc 584 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (suc 𝑥𝐴 → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴)))
6762, 66mpd 15 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴))
6855, 67eqsstrrd 3982 . . . 4 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
6968ralrimiva 3125 . . 3 (𝐴 ∈ dom 𝑅1 → ∀𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
70 iunss 5009 . . 3 ( 𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴) ↔ ∀𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
7169, 70sylibr 234 . 2 (𝐴 ∈ dom 𝑅1 𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
7251, 71eqssd 3964 1 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914  c0 4296  𝒫 cpw 4563   ciun 4955  Tr wtr 5214  dom cdm 5638  Ord word 6331  Oncon0 6332  Lim wlim 6333  suc csuc 6334  Fun wfun 6505  cfv 6511  𝑅1cr1 9715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-r1 9717
This theorem is referenced by:  rankr1ai  9751  r1val3  9791
  Copyright terms: Public domain W3C validator