MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1val1 Structured version   Visualization version   GIF version

Theorem r1val1 8866
Description: The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of [Enderton] p. 202. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1val1 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem r1val1
StepHypRef Expression
1 simpr 477 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → 𝐴 = ∅)
21fveq2d 6381 . . . . 5 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) = (𝑅1‘∅))
3 r10 8848 . . . . 5 (𝑅1‘∅) = ∅
42, 3syl6eq 2815 . . . 4 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) = ∅)
5 0ss 4136 . . . . 5 ∅ ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)
65a1i 11 . . . 4 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → ∅ ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
74, 6eqsstrd 3801 . . 3 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
8 nfv 2009 . . . . 5 𝑥 𝐴 ∈ dom 𝑅1
9 nfcv 2907 . . . . . 6 𝑥(𝑅1𝐴)
10 nfiu1 4708 . . . . . 6 𝑥 𝑥𝐴 𝒫 (𝑅1𝑥)
119, 10nfss 3756 . . . . 5 𝑥(𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)
12 simpr 477 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝐴 = suc 𝑥)
1312fveq2d 6381 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) = (𝑅1‘suc 𝑥))
14 eleq1 2832 . . . . . . . . . . . 12 (𝐴 = suc 𝑥 → (𝐴 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
1514biimpac 470 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → suc 𝑥 ∈ dom 𝑅1)
16 r1funlim 8846 . . . . . . . . . . . . 13 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1716simpri 479 . . . . . . . . . . . 12 Lim dom 𝑅1
18 limsuc 7249 . . . . . . . . . . . 12 (Lim dom 𝑅1 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
1917, 18ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1)
2015, 19sylibr 225 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝑥 ∈ dom 𝑅1)
21 r1sucg 8849 . . . . . . . . . 10 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2220, 21syl 17 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2313, 22eqtrd 2799 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) = 𝒫 (𝑅1𝑥))
24 vex 3353 . . . . . . . . . . 11 𝑥 ∈ V
2524sucid 5989 . . . . . . . . . 10 𝑥 ∈ suc 𝑥
2625, 12syl5eleqr 2851 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝑥𝐴)
27 ssiun2 4721 . . . . . . . . 9 (𝑥𝐴 → 𝒫 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
2826, 27syl 17 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝒫 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
2923, 28eqsstrd 3801 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
3029ex 401 . . . . . 6 (𝐴 ∈ dom 𝑅1 → (𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)))
3130a1d 25 . . . . 5 (𝐴 ∈ dom 𝑅1 → (𝑥 ∈ On → (𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))))
328, 11, 31rexlimd 3173 . . . 4 (𝐴 ∈ dom 𝑅1 → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)))
3332imp 395 . . 3 ((𝐴 ∈ dom 𝑅1 ∧ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
34 r1limg 8851 . . . . 5 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
35 r1tr 8856 . . . . . . . . 9 Tr (𝑅1𝑥)
36 dftr4 4918 . . . . . . . . 9 (Tr (𝑅1𝑥) ↔ (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
3735, 36mpbi 221 . . . . . . . 8 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥)
3837a1i 11 . . . . . . 7 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
3938ralrimivw 3114 . . . . . 6 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → ∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
40 ss2iun 4694 . . . . . 6 (∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥) → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4139, 40syl 17 . . . . 5 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4234, 41eqsstrd 3801 . . . 4 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4342adantrl 707 . . 3 ((𝐴 ∈ dom 𝑅1 ∧ (𝐴 ∈ V ∧ Lim 𝐴)) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
44 limord 5969 . . . . . . 7 (Lim dom 𝑅1 → Ord dom 𝑅1)
4517, 44ax-mp 5 . . . . . 6 Ord dom 𝑅1
46 ordsson 7189 . . . . . 6 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
4745, 46ax-mp 5 . . . . 5 dom 𝑅1 ⊆ On
4847sseli 3759 . . . 4 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
49 onzsl 7246 . . . 4 (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
5048, 49sylib 209 . . 3 (𝐴 ∈ dom 𝑅1 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
517, 33, 43, 50mpjao3dan 1556 . 2 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
52 ordtr1 5953 . . . . . . . 8 (Ord dom 𝑅1 → ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
5345, 52ax-mp 5 . . . . . . 7 ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
5453ancoms 450 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 ∈ dom 𝑅1)
5554, 21syl 17 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
56 simpr 477 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥𝐴)
57 ordelord 5932 . . . . . . . . . 10 ((Ord dom 𝑅1𝐴 ∈ dom 𝑅1) → Ord 𝐴)
5845, 57mpan 681 . . . . . . . . 9 (𝐴 ∈ dom 𝑅1 → Ord 𝐴)
5958adantr 472 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → Ord 𝐴)
60 ordelsuc 7220 . . . . . . . 8 ((𝑥𝐴 ∧ Ord 𝐴) → (𝑥𝐴 ↔ suc 𝑥𝐴))
6156, 59, 60syl2anc 579 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑥𝐴 ↔ suc 𝑥𝐴))
6256, 61mpbid 223 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → suc 𝑥𝐴)
6354, 19sylib 209 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → suc 𝑥 ∈ dom 𝑅1)
64 simpl 474 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝐴 ∈ dom 𝑅1)
65 r1ord3g 8859 . . . . . . 7 ((suc 𝑥 ∈ dom 𝑅1𝐴 ∈ dom 𝑅1) → (suc 𝑥𝐴 → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴)))
6663, 64, 65syl2anc 579 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (suc 𝑥𝐴 → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴)))
6762, 66mpd 15 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴))
6855, 67eqsstr3d 3802 . . . 4 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
6968ralrimiva 3113 . . 3 (𝐴 ∈ dom 𝑅1 → ∀𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
70 iunss 4719 . . 3 ( 𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴) ↔ ∀𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
7169, 70sylibr 225 . 2 (𝐴 ∈ dom 𝑅1 𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
7251, 71eqssd 3780 1 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3o 1106   = wceq 1652  wcel 2155  wral 3055  wrex 3056  Vcvv 3350  wss 3734  c0 4081  𝒫 cpw 4317   ciun 4678  Tr wtr 4913  dom cdm 5279  Ord word 5909  Oncon0 5910  Lim wlim 5911  suc csuc 5912  Fun wfun 6064  cfv 6070  𝑅1cr1 8842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-om 7266  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-r1 8844
This theorem is referenced by:  rankr1ai  8878  r1val3  8918
  Copyright terms: Public domain W3C validator