![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1sucg | Structured version Visualization version GIF version |
Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1sucg | ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgsucg 7756 | . . 3 ⊢ (𝐴 ∈ dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴))) | |
2 | df-r1 8875 | . . . 4 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
3 | 2 | dmeqi 5526 | . . 3 ⊢ dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) |
4 | 1, 3 | eleq2s 2894 | . 2 ⊢ (𝐴 ∈ dom 𝑅1 → (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴))) |
5 | 2 | fveq1i 6410 | . 2 ⊢ (𝑅1‘suc 𝐴) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) |
6 | fvex 6422 | . . . 4 ⊢ (𝑅1‘𝐴) ∈ V | |
7 | pweq 4350 | . . . . 5 ⊢ (𝑥 = (𝑅1‘𝐴) → 𝒫 𝑥 = 𝒫 (𝑅1‘𝐴)) | |
8 | eqid 2797 | . . . . 5 ⊢ (𝑥 ∈ V ↦ 𝒫 𝑥) = (𝑥 ∈ V ↦ 𝒫 𝑥) | |
9 | 6 | pwex 5048 | . . . . 5 ⊢ 𝒫 (𝑅1‘𝐴) ∈ V |
10 | 7, 8, 9 | fvmpt 6505 | . . . 4 ⊢ ((𝑅1‘𝐴) ∈ V → ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1‘𝐴)) = 𝒫 (𝑅1‘𝐴)) |
11 | 6, 10 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1‘𝐴)) = 𝒫 (𝑅1‘𝐴) |
12 | 2 | fveq1i 6410 | . . . 4 ⊢ (𝑅1‘𝐴) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴) |
13 | 12 | fveq2i 6412 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1‘𝐴)) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)) |
14 | 11, 13 | eqtr3i 2821 | . 2 ⊢ 𝒫 (𝑅1‘𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)) |
15 | 4, 5, 14 | 3eqtr4g 2856 | 1 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 Vcvv 3383 ∅c0 4113 𝒫 cpw 4347 ↦ cmpt 4920 dom cdm 5310 suc csuc 5941 ‘cfv 6099 reccrdg 7742 𝑅1cr1 8873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-r1 8875 |
This theorem is referenced by: r1suc 8881 r1fin 8884 r1tr 8887 r1ordg 8889 r1pwss 8895 r1val1 8897 rankwflemb 8904 r1elwf 8907 rankr1ai 8909 rankr1bg 8914 pwwf 8918 unwf 8921 uniwf 8930 rankonidlem 8939 rankr1id 8973 |
Copyright terms: Public domain | W3C validator |