![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1sucg | Structured version Visualization version GIF version |
Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1sucg | ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgsucg 8427 | . . 3 ⊢ (𝐴 ∈ dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴))) | |
2 | df-r1 9763 | . . . 4 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
3 | 2 | dmeqi 5905 | . . 3 ⊢ dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) |
4 | 1, 3 | eleq2s 2849 | . 2 ⊢ (𝐴 ∈ dom 𝑅1 → (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴))) |
5 | 2 | fveq1i 6893 | . 2 ⊢ (𝑅1‘suc 𝐴) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) |
6 | fvex 6905 | . . . 4 ⊢ (𝑅1‘𝐴) ∈ V | |
7 | pweq 4617 | . . . . 5 ⊢ (𝑥 = (𝑅1‘𝐴) → 𝒫 𝑥 = 𝒫 (𝑅1‘𝐴)) | |
8 | eqid 2730 | . . . . 5 ⊢ (𝑥 ∈ V ↦ 𝒫 𝑥) = (𝑥 ∈ V ↦ 𝒫 𝑥) | |
9 | 6 | pwex 5379 | . . . . 5 ⊢ 𝒫 (𝑅1‘𝐴) ∈ V |
10 | 7, 8, 9 | fvmpt 6999 | . . . 4 ⊢ ((𝑅1‘𝐴) ∈ V → ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1‘𝐴)) = 𝒫 (𝑅1‘𝐴)) |
11 | 6, 10 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1‘𝐴)) = 𝒫 (𝑅1‘𝐴) |
12 | 2 | fveq1i 6893 | . . . 4 ⊢ (𝑅1‘𝐴) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴) |
13 | 12 | fveq2i 6895 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1‘𝐴)) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)) |
14 | 11, 13 | eqtr3i 2760 | . 2 ⊢ 𝒫 (𝑅1‘𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)) |
15 | 4, 5, 14 | 3eqtr4g 2795 | 1 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ∅c0 4323 𝒫 cpw 4603 ↦ cmpt 5232 dom cdm 5677 suc csuc 6367 ‘cfv 6544 reccrdg 8413 𝑅1cr1 9761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-r1 9763 |
This theorem is referenced by: r1suc 9769 r1fin 9772 r1tr 9775 r1ordg 9777 r1pwss 9783 r1val1 9785 rankwflemb 9792 r1elwf 9795 rankr1ai 9797 rankr1bg 9802 pwwf 9806 unwf 9809 uniwf 9818 rankonidlem 9827 rankr1id 9861 |
Copyright terms: Public domain | W3C validator |