MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1sucg Structured version   Visualization version   GIF version

Theorem r1sucg 9515
Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1sucg (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))

Proof of Theorem r1sucg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rdgsucg 8242 . . 3 (𝐴 ∈ dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)))
2 df-r1 9510 . . . 4 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
32dmeqi 5807 . . 3 dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
41, 3eleq2s 2857 . 2 (𝐴 ∈ dom 𝑅1 → (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)))
52fveq1i 6768 . 2 (𝑅1‘suc 𝐴) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴)
6 fvex 6780 . . . 4 (𝑅1𝐴) ∈ V
7 pweq 4550 . . . . 5 (𝑥 = (𝑅1𝐴) → 𝒫 𝑥 = 𝒫 (𝑅1𝐴))
8 eqid 2738 . . . . 5 (𝑥 ∈ V ↦ 𝒫 𝑥) = (𝑥 ∈ V ↦ 𝒫 𝑥)
96pwex 5302 . . . . 5 𝒫 (𝑅1𝐴) ∈ V
107, 8, 9fvmpt 6868 . . . 4 ((𝑅1𝐴) ∈ V → ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1𝐴)) = 𝒫 (𝑅1𝐴))
116, 10ax-mp 5 . . 3 ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1𝐴)) = 𝒫 (𝑅1𝐴)
122fveq1i 6768 . . . 4 (𝑅1𝐴) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)
1312fveq2i 6770 . . 3 ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1𝐴)) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴))
1411, 13eqtr3i 2768 . 2 𝒫 (𝑅1𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴))
154, 5, 143eqtr4g 2803 1 (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3430  c0 4257  𝒫 cpw 4534  cmpt 5157  dom cdm 5585  suc csuc 6262  cfv 6427  reccrdg 8228  𝑅1cr1 9508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-ov 7271  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-r1 9510
This theorem is referenced by:  r1suc  9516  r1fin  9519  r1tr  9522  r1ordg  9524  r1pwss  9530  r1val1  9532  rankwflemb  9539  r1elwf  9542  rankr1ai  9544  rankr1bg  9549  pwwf  9553  unwf  9556  uniwf  9565  rankonidlem  9574  rankr1id  9608
  Copyright terms: Public domain W3C validator