| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1sucg | Structured version Visualization version GIF version | ||
| Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1sucg | ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsucg 8442 | . . 3 ⊢ (𝐴 ∈ dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴))) | |
| 2 | df-r1 9783 | . . . 4 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 3 | 2 | dmeqi 5889 | . . 3 ⊢ dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) |
| 4 | 1, 3 | eleq2s 2853 | . 2 ⊢ (𝐴 ∈ dom 𝑅1 → (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴))) |
| 5 | 2 | fveq1i 6882 | . 2 ⊢ (𝑅1‘suc 𝐴) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) |
| 6 | fvex 6894 | . . . 4 ⊢ (𝑅1‘𝐴) ∈ V | |
| 7 | pweq 4594 | . . . . 5 ⊢ (𝑥 = (𝑅1‘𝐴) → 𝒫 𝑥 = 𝒫 (𝑅1‘𝐴)) | |
| 8 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ V ↦ 𝒫 𝑥) = (𝑥 ∈ V ↦ 𝒫 𝑥) | |
| 9 | 6 | pwex 5355 | . . . . 5 ⊢ 𝒫 (𝑅1‘𝐴) ∈ V |
| 10 | 7, 8, 9 | fvmpt 6991 | . . . 4 ⊢ ((𝑅1‘𝐴) ∈ V → ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1‘𝐴)) = 𝒫 (𝑅1‘𝐴)) |
| 11 | 6, 10 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1‘𝐴)) = 𝒫 (𝑅1‘𝐴) |
| 12 | 2 | fveq1i 6882 | . . . 4 ⊢ (𝑅1‘𝐴) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴) |
| 13 | 12 | fveq2i 6884 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1‘𝐴)) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)) |
| 14 | 11, 13 | eqtr3i 2761 | . 2 ⊢ 𝒫 (𝑅1‘𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)) |
| 15 | 4, 5, 14 | 3eqtr4g 2796 | 1 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 𝒫 cpw 4580 ↦ cmpt 5206 dom cdm 5659 suc csuc 6359 ‘cfv 6536 reccrdg 8428 𝑅1cr1 9781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-r1 9783 |
| This theorem is referenced by: r1suc 9789 r1fin 9792 r1tr 9795 r1ordg 9797 r1pwss 9803 r1val1 9805 rankwflemb 9812 r1elwf 9815 rankr1ai 9817 rankr1bg 9822 pwwf 9826 unwf 9829 uniwf 9838 rankonidlem 9847 rankr1id 9881 |
| Copyright terms: Public domain | W3C validator |