MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1sucg Structured version   Visualization version   GIF version

Theorem r1sucg 9458
Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1sucg (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))

Proof of Theorem r1sucg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rdgsucg 8225 . . 3 (𝐴 ∈ dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)))
2 df-r1 9453 . . . 4 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
32dmeqi 5802 . . 3 dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
41, 3eleq2s 2857 . 2 (𝐴 ∈ dom 𝑅1 → (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)))
52fveq1i 6757 . 2 (𝑅1‘suc 𝐴) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴)
6 fvex 6769 . . . 4 (𝑅1𝐴) ∈ V
7 pweq 4546 . . . . 5 (𝑥 = (𝑅1𝐴) → 𝒫 𝑥 = 𝒫 (𝑅1𝐴))
8 eqid 2738 . . . . 5 (𝑥 ∈ V ↦ 𝒫 𝑥) = (𝑥 ∈ V ↦ 𝒫 𝑥)
96pwex 5298 . . . . 5 𝒫 (𝑅1𝐴) ∈ V
107, 8, 9fvmpt 6857 . . . 4 ((𝑅1𝐴) ∈ V → ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1𝐴)) = 𝒫 (𝑅1𝐴))
116, 10ax-mp 5 . . 3 ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1𝐴)) = 𝒫 (𝑅1𝐴)
122fveq1i 6757 . . . 4 (𝑅1𝐴) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)
1312fveq2i 6759 . . 3 ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1𝐴)) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴))
1411, 13eqtr3i 2768 . 2 𝒫 (𝑅1𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴))
154, 5, 143eqtr4g 2804 1 (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  𝒫 cpw 4530  cmpt 5153  dom cdm 5580  suc csuc 6253  cfv 6418  reccrdg 8211  𝑅1cr1 9451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453
This theorem is referenced by:  r1suc  9459  r1fin  9462  r1tr  9465  r1ordg  9467  r1pwss  9473  r1val1  9475  rankwflemb  9482  r1elwf  9485  rankr1ai  9487  rankr1bg  9492  pwwf  9496  unwf  9499  uniwf  9508  rankonidlem  9517  rankr1id  9551
  Copyright terms: Public domain W3C validator