| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1sucg | Structured version Visualization version GIF version | ||
| Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1sucg | ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsucg 8368 | . . 3 ⊢ (𝐴 ∈ dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴))) | |
| 2 | df-r1 9693 | . . . 4 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 3 | 2 | dmeqi 5858 | . . 3 ⊢ dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) |
| 4 | 1, 3 | eleq2s 2846 | . 2 ⊢ (𝐴 ∈ dom 𝑅1 → (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴))) |
| 5 | 2 | fveq1i 6841 | . 2 ⊢ (𝑅1‘suc 𝐴) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) |
| 6 | fvex 6853 | . . . 4 ⊢ (𝑅1‘𝐴) ∈ V | |
| 7 | pweq 4573 | . . . . 5 ⊢ (𝑥 = (𝑅1‘𝐴) → 𝒫 𝑥 = 𝒫 (𝑅1‘𝐴)) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ V ↦ 𝒫 𝑥) = (𝑥 ∈ V ↦ 𝒫 𝑥) | |
| 9 | 6 | pwex 5330 | . . . . 5 ⊢ 𝒫 (𝑅1‘𝐴) ∈ V |
| 10 | 7, 8, 9 | fvmpt 6950 | . . . 4 ⊢ ((𝑅1‘𝐴) ∈ V → ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1‘𝐴)) = 𝒫 (𝑅1‘𝐴)) |
| 11 | 6, 10 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1‘𝐴)) = 𝒫 (𝑅1‘𝐴) |
| 12 | 2 | fveq1i 6841 | . . . 4 ⊢ (𝑅1‘𝐴) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴) |
| 13 | 12 | fveq2i 6843 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1‘𝐴)) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)) |
| 14 | 11, 13 | eqtr3i 2754 | . 2 ⊢ 𝒫 (𝑅1‘𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)) |
| 15 | 4, 5, 14 | 3eqtr4g 2789 | 1 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 𝒫 cpw 4559 ↦ cmpt 5183 dom cdm 5631 suc csuc 6322 ‘cfv 6499 reccrdg 8354 𝑅1cr1 9691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-r1 9693 |
| This theorem is referenced by: r1suc 9699 r1fin 9702 r1tr 9705 r1ordg 9707 r1pwss 9713 r1val1 9715 rankwflemb 9722 r1elwf 9725 rankr1ai 9727 rankr1bg 9732 pwwf 9736 unwf 9739 uniwf 9748 rankonidlem 9757 rankr1id 9791 |
| Copyright terms: Public domain | W3C validator |