MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1sucg Structured version   Visualization version   GIF version

Theorem r1sucg 9768
Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1sucg (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))

Proof of Theorem r1sucg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rdgsucg 8427 . . 3 (𝐴 ∈ dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) → (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)))
2 df-r1 9763 . . . 4 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
32dmeqi 5905 . . 3 dom 𝑅1 = dom rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
41, 3eleq2s 2849 . 2 (𝐴 ∈ dom 𝑅1 → (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)))
52fveq1i 6893 . 2 (𝑅1‘suc 𝐴) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘suc 𝐴)
6 fvex 6905 . . . 4 (𝑅1𝐴) ∈ V
7 pweq 4617 . . . . 5 (𝑥 = (𝑅1𝐴) → 𝒫 𝑥 = 𝒫 (𝑅1𝐴))
8 eqid 2730 . . . . 5 (𝑥 ∈ V ↦ 𝒫 𝑥) = (𝑥 ∈ V ↦ 𝒫 𝑥)
96pwex 5379 . . . . 5 𝒫 (𝑅1𝐴) ∈ V
107, 8, 9fvmpt 6999 . . . 4 ((𝑅1𝐴) ∈ V → ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1𝐴)) = 𝒫 (𝑅1𝐴))
116, 10ax-mp 5 . . 3 ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1𝐴)) = 𝒫 (𝑅1𝐴)
122fveq1i 6893 . . . 4 (𝑅1𝐴) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴)
1312fveq2i 6895 . . 3 ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(𝑅1𝐴)) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴))
1411, 13eqtr3i 2760 . 2 𝒫 (𝑅1𝐴) = ((𝑥 ∈ V ↦ 𝒫 𝑥)‘(rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘𝐴))
154, 5, 143eqtr4g 2795 1 (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  Vcvv 3472  c0 4323  𝒫 cpw 4603  cmpt 5232  dom cdm 5677  suc csuc 6367  cfv 6544  reccrdg 8413  𝑅1cr1 9761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-r1 9763
This theorem is referenced by:  r1suc  9769  r1fin  9772  r1tr  9775  r1ordg  9777  r1pwss  9783  r1val1  9785  rankwflemb  9792  r1elwf  9795  rankr1ai  9797  rankr1bg  9802  pwwf  9806  unwf  9809  uniwf  9818  rankonidlem  9827  rankr1id  9861
  Copyright terms: Public domain W3C validator