MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1suc Structured version   Visualization version   GIF version

Theorem r1suc 9284
Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
Assertion
Ref Expression
r1suc (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))

Proof of Theorem r1suc
StepHypRef Expression
1 r1sucg 9283 . 2 (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
2 r1fnon 9281 . . . 4 𝑅1 Fn On
32fndmi 6451 . . 3 dom 𝑅1 = On
43eqcomi 2748 . 2 On = dom 𝑅1
51, 4eleq2s 2852 1 (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  𝒫 cpw 4498  dom cdm 5535  Oncon0 6182  suc csuc 6184  cfv 6349  𝑅1cr1 9276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-r1 9278
This theorem is referenced by:  r1sdom  9288  r1sssuc  9297  tz9.12lem3  9303  rankval2  9332  rankpwi  9337  dfac12lem2  9656  dfac12r  9658  ackbij2lem2  9752  ackbij2lem3  9753  wunr1om  10231  r1wunlim  10249  tskr1om  10279  inar1  10287  inatsk  10290  grur1a  10331  grothomex  10341  rankeq1o  34128  elhf2  34132  0hf  34134  aomclem1  40491  grur1cld  41432
  Copyright terms: Public domain W3C validator