![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1suc | Structured version Visualization version GIF version |
Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
Ref | Expression |
---|---|
r1suc | ⊢ (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1sucg 9764 | . 2 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) | |
2 | r1fnon 9762 | . . . 4 ⊢ 𝑅1 Fn On | |
3 | 2 | fndmi 6654 | . . 3 ⊢ dom 𝑅1 = On |
4 | 3 | eqcomi 2742 | . 2 ⊢ On = dom 𝑅1 |
5 | 1, 4 | eleq2s 2852 | 1 ⊢ (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 𝒫 cpw 4603 dom cdm 5677 Oncon0 6365 suc csuc 6367 ‘cfv 6544 𝑅1cr1 9757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-r1 9759 |
This theorem is referenced by: r1sdom 9769 r1sssuc 9778 tz9.12lem3 9784 rankval2 9813 rankpwi 9818 dfac12lem2 10139 dfac12r 10141 ackbij2lem2 10235 ackbij2lem3 10236 wunr1om 10714 r1wunlim 10732 tskr1om 10762 inar1 10770 inatsk 10773 grur1a 10814 grothomex 10824 rankeq1o 35143 elhf2 35147 0hf 35149 aomclem1 41796 grur1cld 42991 |
Copyright terms: Public domain | W3C validator |