![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1suc | Structured version Visualization version GIF version |
Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
Ref | Expression |
---|---|
r1suc | ⊢ (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1sucg 8882 | . 2 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) | |
2 | r1fnon 8880 | . . . 4 ⊢ 𝑅1 Fn On | |
3 | fndm 6201 | . . . 4 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ dom 𝑅1 = On |
5 | 4 | eqcomi 2808 | . 2 ⊢ On = dom 𝑅1 |
6 | 1, 5 | eleq2s 2896 | 1 ⊢ (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 𝒫 cpw 4349 dom cdm 5312 Oncon0 5941 suc csuc 5943 Fn wfn 6096 ‘cfv 6101 𝑅1cr1 8875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-r1 8877 |
This theorem is referenced by: r1sdom 8887 r1sssuc 8896 tz9.12lem3 8902 rankval2 8931 rankpwi 8936 dfac12lem2 9254 dfac12r 9256 ackbij2lem2 9350 ackbij2lem3 9351 wunr1om 9829 r1wunlim 9847 tskr1om 9877 inar1 9885 inatsk 9888 grur1a 9929 grothomex 9939 rankeq1o 32791 elhf2 32795 0hf 32797 aomclem1 38409 |
Copyright terms: Public domain | W3C validator |