MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1val3 Structured version   Visualization version   GIF version

Theorem r1val3 9844
Description: The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of [Monk1] p. 113. (Contributed by NM, 30-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1val3 (𝐴 ∈ On → (𝑅1𝐴) = 𝑥𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem r1val3
StepHypRef Expression
1 r1fnon 9773 . . . . 5 𝑅1 Fn On
21fndmi 6638 . . . 4 dom 𝑅1 = On
32eleq2i 2825 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
4 r1val1 9792 . . 3 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
53, 4sylbir 235 . 2 (𝐴 ∈ On → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
6 onelon 6374 . . . . 5 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
7 r1val2 9843 . . . . 5 (𝑥 ∈ On → (𝑅1𝑥) = {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
86, 7syl 17 . . . 4 ((𝐴 ∈ On ∧ 𝑥𝐴) → (𝑅1𝑥) = {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
98pweqd 4590 . . 3 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝒫 (𝑅1𝑥) = 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
109iuneq2dv 4989 . 2 (𝐴 ∈ On → 𝑥𝐴 𝒫 (𝑅1𝑥) = 𝑥𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
115, 10eqtrd 2769 1 (𝐴 ∈ On → (𝑅1𝐴) = 𝑥𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2712  𝒫 cpw 4573   ciun 4964  dom cdm 5651  Oncon0 6349  cfv 6527  𝑅1cr1 9768  rankcrnk 9769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-reg 9598  ax-inf2 9647
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-r1 9770  df-rank 9771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator