![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1val3 | Structured version Visualization version GIF version |
Description: The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of [Monk1] p. 113. (Contributed by NM, 30-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
r1val3 | β’ (π΄ β On β (π 1βπ΄) = βͺ π₯ β π΄ π« {π¦ β£ (rankβπ¦) β π₯}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1fnon 9768 | . . . . 5 β’ π 1 Fn On | |
2 | 1 | fndmi 6653 | . . . 4 β’ dom π 1 = On |
3 | 2 | eleq2i 2824 | . . 3 β’ (π΄ β dom π 1 β π΄ β On) |
4 | r1val1 9787 | . . 3 β’ (π΄ β dom π 1 β (π 1βπ΄) = βͺ π₯ β π΄ π« (π 1βπ₯)) | |
5 | 3, 4 | sylbir 234 | . 2 β’ (π΄ β On β (π 1βπ΄) = βͺ π₯ β π΄ π« (π 1βπ₯)) |
6 | onelon 6389 | . . . . 5 β’ ((π΄ β On β§ π₯ β π΄) β π₯ β On) | |
7 | r1val2 9838 | . . . . 5 β’ (π₯ β On β (π 1βπ₯) = {π¦ β£ (rankβπ¦) β π₯}) | |
8 | 6, 7 | syl 17 | . . . 4 β’ ((π΄ β On β§ π₯ β π΄) β (π 1βπ₯) = {π¦ β£ (rankβπ¦) β π₯}) |
9 | 8 | pweqd 4619 | . . 3 β’ ((π΄ β On β§ π₯ β π΄) β π« (π 1βπ₯) = π« {π¦ β£ (rankβπ¦) β π₯}) |
10 | 9 | iuneq2dv 5021 | . 2 β’ (π΄ β On β βͺ π₯ β π΄ π« (π 1βπ₯) = βͺ π₯ β π΄ π« {π¦ β£ (rankβπ¦) β π₯}) |
11 | 5, 10 | eqtrd 2771 | 1 β’ (π΄ β On β (π 1βπ΄) = βͺ π₯ β π΄ π« {π¦ β£ (rankβπ¦) β π₯}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 {cab 2708 π« cpw 4602 βͺ ciun 4997 dom cdm 5676 Oncon0 6364 βcfv 6543 π 1cr1 9763 rankcrnk 9764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-reg 9593 ax-inf2 9642 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-r1 9765 df-rank 9766 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |