MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1val3 Structured version   Visualization version   GIF version

Theorem r1val3 9261
Description: The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of [Monk1] p. 113. (Contributed by NM, 30-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1val3 (𝐴 ∈ On → (𝑅1𝐴) = 𝑥𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem r1val3
StepHypRef Expression
1 r1fnon 9190 . . . . 5 𝑅1 Fn On
2 fndm 6454 . . . . 5 (𝑅1 Fn On → dom 𝑅1 = On)
31, 2ax-mp 5 . . . 4 dom 𝑅1 = On
43eleq2i 2909 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
5 r1val1 9209 . . 3 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
64, 5sylbir 236 . 2 (𝐴 ∈ On → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
7 onelon 6215 . . . . 5 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
8 r1val2 9260 . . . . 5 (𝑥 ∈ On → (𝑅1𝑥) = {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
97, 8syl 17 . . . 4 ((𝐴 ∈ On ∧ 𝑥𝐴) → (𝑅1𝑥) = {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
109pweqd 4547 . . 3 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝒫 (𝑅1𝑥) = 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
1110iuneq2dv 4940 . 2 (𝐴 ∈ On → 𝑥𝐴 𝒫 (𝑅1𝑥) = 𝑥𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
126, 11eqtrd 2861 1 (𝐴 ∈ On → (𝑅1𝐴) = 𝑥𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  {cab 2804  𝒫 cpw 4542   ciun 4917  dom cdm 5554  Oncon0 6190   Fn wfn 6349  cfv 6354  𝑅1cr1 9185  rankcrnk 9186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-reg 9050  ax-inf2 9098
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-om 7574  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-r1 9187  df-rank 9188
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator