MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1val3 Structured version   Visualization version   GIF version

Theorem r1val3 9907
Description: The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of [Monk1] p. 113. (Contributed by NM, 30-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1val3 (𝐴 ∈ On → (𝑅1𝐴) = 𝑥𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem r1val3
StepHypRef Expression
1 r1fnon 9836 . . . . 5 𝑅1 Fn On
21fndmi 6683 . . . 4 dom 𝑅1 = On
32eleq2i 2836 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
4 r1val1 9855 . . 3 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
53, 4sylbir 235 . 2 (𝐴 ∈ On → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
6 onelon 6420 . . . . 5 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
7 r1val2 9906 . . . . 5 (𝑥 ∈ On → (𝑅1𝑥) = {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
86, 7syl 17 . . . 4 ((𝐴 ∈ On ∧ 𝑥𝐴) → (𝑅1𝑥) = {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
98pweqd 4639 . . 3 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝒫 (𝑅1𝑥) = 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
109iuneq2dv 5039 . 2 (𝐴 ∈ On → 𝑥𝐴 𝒫 (𝑅1𝑥) = 𝑥𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
115, 10eqtrd 2780 1 (𝐴 ∈ On → (𝑅1𝐴) = 𝑥𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  𝒫 cpw 4622   ciun 5015  dom cdm 5700  Oncon0 6395  cfv 6573  𝑅1cr1 9831  rankcrnk 9832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833  df-rank 9834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator