| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1val3 | Structured version Visualization version GIF version | ||
| Description: The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of [Monk1] p. 113. (Contributed by NM, 30-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1val3 | ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1fnon 9773 | . . . . 5 ⊢ 𝑅1 Fn On | |
| 2 | 1 | fndmi 6638 | . . . 4 ⊢ dom 𝑅1 = On |
| 3 | 2 | eleq2i 2825 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ On) |
| 4 | r1val1 9792 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 (𝑅1‘𝑥)) | |
| 5 | 3, 4 | sylbir 235 | . 2 ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 (𝑅1‘𝑥)) |
| 6 | onelon 6374 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 7 | r1val2 9843 | . . . . 5 ⊢ (𝑥 ∈ On → (𝑅1‘𝑥) = {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (𝑅1‘𝑥) = {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
| 9 | 8 | pweqd 4590 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝒫 (𝑅1‘𝑥) = 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
| 10 | 9 | iuneq2dv 4989 | . 2 ⊢ (𝐴 ∈ On → ∪ 𝑥 ∈ 𝐴 𝒫 (𝑅1‘𝑥) = ∪ 𝑥 ∈ 𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
| 11 | 5, 10 | eqtrd 2769 | 1 ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 𝒫 cpw 4573 ∪ ciun 4964 dom cdm 5651 Oncon0 6349 ‘cfv 6527 𝑅1cr1 9768 rankcrnk 9769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-reg 9598 ax-inf2 9647 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-r1 9770 df-rank 9771 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |