| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1val3 | Structured version Visualization version GIF version | ||
| Description: The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of [Monk1] p. 113. (Contributed by NM, 30-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1val3 | ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1fnon 9807 | . . . . 5 ⊢ 𝑅1 Fn On | |
| 2 | 1 | fndmi 6672 | . . . 4 ⊢ dom 𝑅1 = On |
| 3 | 2 | eleq2i 2833 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ On) |
| 4 | r1val1 9826 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 (𝑅1‘𝑥)) | |
| 5 | 3, 4 | sylbir 235 | . 2 ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 (𝑅1‘𝑥)) |
| 6 | onelon 6409 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 7 | r1val2 9877 | . . . . 5 ⊢ (𝑥 ∈ On → (𝑅1‘𝑥) = {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (𝑅1‘𝑥) = {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
| 9 | 8 | pweqd 4617 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝒫 (𝑅1‘𝑥) = 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
| 10 | 9 | iuneq2dv 5016 | . 2 ⊢ (𝐴 ∈ On → ∪ 𝑥 ∈ 𝐴 𝒫 (𝑅1‘𝑥) = ∪ 𝑥 ∈ 𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
| 11 | 5, 10 | eqtrd 2777 | 1 ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 𝒫 cpw 4600 ∪ ciun 4991 dom cdm 5685 Oncon0 6384 ‘cfv 6561 𝑅1cr1 9802 rankcrnk 9803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-r1 9804 df-rank 9805 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |