MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1val3 Structured version   Visualization version   GIF version

Theorem r1val3 9839
Description: The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of [Monk1] p. 113. (Contributed by NM, 30-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1val3 (𝐴 ∈ On β†’ (𝑅1β€˜π΄) = βˆͺ π‘₯ ∈ 𝐴 𝒫 {𝑦 ∣ (rankβ€˜π‘¦) ∈ π‘₯})
Distinct variable group:   π‘₯,𝑦,𝐴

Proof of Theorem r1val3
StepHypRef Expression
1 r1fnon 9768 . . . . 5 𝑅1 Fn On
21fndmi 6653 . . . 4 dom 𝑅1 = On
32eleq2i 2824 . . 3 (𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ On)
4 r1val1 9787 . . 3 (𝐴 ∈ dom 𝑅1 β†’ (𝑅1β€˜π΄) = βˆͺ π‘₯ ∈ 𝐴 𝒫 (𝑅1β€˜π‘₯))
53, 4sylbir 234 . 2 (𝐴 ∈ On β†’ (𝑅1β€˜π΄) = βˆͺ π‘₯ ∈ 𝐴 𝒫 (𝑅1β€˜π‘₯))
6 onelon 6389 . . . . 5 ((𝐴 ∈ On ∧ π‘₯ ∈ 𝐴) β†’ π‘₯ ∈ On)
7 r1val2 9838 . . . . 5 (π‘₯ ∈ On β†’ (𝑅1β€˜π‘₯) = {𝑦 ∣ (rankβ€˜π‘¦) ∈ π‘₯})
86, 7syl 17 . . . 4 ((𝐴 ∈ On ∧ π‘₯ ∈ 𝐴) β†’ (𝑅1β€˜π‘₯) = {𝑦 ∣ (rankβ€˜π‘¦) ∈ π‘₯})
98pweqd 4619 . . 3 ((𝐴 ∈ On ∧ π‘₯ ∈ 𝐴) β†’ 𝒫 (𝑅1β€˜π‘₯) = 𝒫 {𝑦 ∣ (rankβ€˜π‘¦) ∈ π‘₯})
109iuneq2dv 5021 . 2 (𝐴 ∈ On β†’ βˆͺ π‘₯ ∈ 𝐴 𝒫 (𝑅1β€˜π‘₯) = βˆͺ π‘₯ ∈ 𝐴 𝒫 {𝑦 ∣ (rankβ€˜π‘¦) ∈ π‘₯})
115, 10eqtrd 2771 1 (𝐴 ∈ On β†’ (𝑅1β€˜π΄) = βˆͺ π‘₯ ∈ 𝐴 𝒫 {𝑦 ∣ (rankβ€˜π‘¦) ∈ π‘₯})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  {cab 2708  π’« cpw 4602  βˆͺ ciun 4997  dom cdm 5676  Oncon0 6364  β€˜cfv 6543  π‘…1cr1 9763  rankcrnk 9764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-reg 9593  ax-inf2 9642
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-r1 9765  df-rank 9766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator