![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1val3 | Structured version Visualization version GIF version |
Description: The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of [Monk1] p. 113. (Contributed by NM, 30-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
r1val3 | ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1fnon 9791 | . . . . 5 ⊢ 𝑅1 Fn On | |
2 | 1 | fndmi 6658 | . . . 4 ⊢ dom 𝑅1 = On |
3 | 2 | eleq2i 2821 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ On) |
4 | r1val1 9810 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 (𝑅1‘𝑥)) | |
5 | 3, 4 | sylbir 234 | . 2 ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 (𝑅1‘𝑥)) |
6 | onelon 6394 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
7 | r1val2 9861 | . . . . 5 ⊢ (𝑥 ∈ On → (𝑅1‘𝑥) = {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → (𝑅1‘𝑥) = {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
9 | 8 | pweqd 4620 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝒫 (𝑅1‘𝑥) = 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
10 | 9 | iuneq2dv 5020 | . 2 ⊢ (𝐴 ∈ On → ∪ 𝑥 ∈ 𝐴 𝒫 (𝑅1‘𝑥) = ∪ 𝑥 ∈ 𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
11 | 5, 10 | eqtrd 2768 | 1 ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2705 𝒫 cpw 4603 ∪ ciun 4996 dom cdm 5678 Oncon0 6369 ‘cfv 6548 𝑅1cr1 9786 rankcrnk 9787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-reg 9616 ax-inf2 9665 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-r1 9788 df-rank 9789 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |