![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz9.13 | Structured version Visualization version GIF version |
Description: Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.) |
Ref | Expression |
---|---|
tz9.13.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tz9.13 | ⊢ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.13.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | setind 9772 | . . . 4 ⊢ (∀𝑧(𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)}) → {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} = V) | |
3 | ssel 3989 | . . . . . . . 8 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → (𝑤 ∈ 𝑧 → 𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)})) | |
4 | vex 3482 | . . . . . . . . 9 ⊢ 𝑤 ∈ V | |
5 | eleq1 2827 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝑤 ∈ (𝑅1‘𝑥))) | |
6 | 5 | rexbidv 3177 | . . . . . . . . 9 ⊢ (𝑦 = 𝑤 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥))) |
7 | 4, 6 | elab 3681 | . . . . . . . 8 ⊢ (𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥)) |
8 | 3, 7 | imbitrdi 251 | . . . . . . 7 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → (𝑤 ∈ 𝑧 → ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥))) |
9 | 8 | ralrimiv 3143 | . . . . . 6 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → ∀𝑤 ∈ 𝑧 ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥)) |
10 | vex 3482 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
11 | 10 | tz9.12 9828 | . . . . . 6 ⊢ (∀𝑤 ∈ 𝑧 ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥) → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
12 | 9, 11 | syl 17 | . . . . 5 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
13 | eleq1 2827 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝑧 ∈ (𝑅1‘𝑥))) | |
14 | 13 | rexbidv 3177 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥))) |
15 | 10, 14 | elab 3681 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
16 | 12, 15 | sylibr 234 | . . . 4 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)}) |
17 | 2, 16 | mpg 1794 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} = V |
18 | 1, 17 | eleqtrri 2838 | . 2 ⊢ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} |
19 | eleq1 2827 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝐴 ∈ (𝑅1‘𝑥))) | |
20 | 19 | rexbidv 3177 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥))) |
21 | 1, 20 | elab 3681 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) |
22 | 18, 21 | mpbi 230 | 1 ⊢ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 ∃wrex 3068 Vcvv 3478 ⊆ wss 3963 Oncon0 6386 ‘cfv 6563 𝑅1cr1 9800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-reg 9630 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-r1 9802 |
This theorem is referenced by: tz9.13g 9830 elhf2 36157 |
Copyright terms: Public domain | W3C validator |