MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.13 Structured version   Visualization version   GIF version

Theorem tz9.13 9720
Description: Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.)
Hypothesis
Ref Expression
tz9.13.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.13 𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem tz9.13
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.13.1 . . 3 𝐴 ∈ V
2 setind 9663 . . . 4 (∀𝑧(𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)}) → {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} = V)
3 ssel 3937 . . . . . . . 8 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → (𝑤𝑧𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)}))
4 vex 3448 . . . . . . . . 9 𝑤 ∈ V
5 eleq1 2816 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦 ∈ (𝑅1𝑥) ↔ 𝑤 ∈ (𝑅1𝑥)))
65rexbidv 3157 . . . . . . . . 9 (𝑦 = 𝑤 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥)))
74, 6elab 3643 . . . . . . . 8 (𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥))
83, 7imbitrdi 251 . . . . . . 7 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → (𝑤𝑧 → ∃𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥)))
98ralrimiv 3124 . . . . . 6 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → ∀𝑤𝑧𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥))
10 vex 3448 . . . . . . 7 𝑧 ∈ V
1110tz9.12 9719 . . . . . 6 (∀𝑤𝑧𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥) → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1𝑥))
129, 11syl 17 . . . . 5 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1𝑥))
13 eleq1 2816 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 ∈ (𝑅1𝑥) ↔ 𝑧 ∈ (𝑅1𝑥)))
1413rexbidv 3157 . . . . . 6 (𝑦 = 𝑧 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1𝑥)))
1510, 14elab 3643 . . . . 5 (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1𝑥))
1612, 15sylibr 234 . . . 4 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)})
172, 16mpg 1797 . . 3 {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} = V
181, 17eleqtrri 2827 . 2 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)}
19 eleq1 2816 . . . 4 (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1𝑥) ↔ 𝐴 ∈ (𝑅1𝑥)))
2019rexbidv 3157 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)))
211, 20elab 3643 . 2 (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
2218, 21mpbi 230 1 𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3444  wss 3911  Oncon0 6320  cfv 6499  𝑅1cr1 9691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-r1 9693
This theorem is referenced by:  tz9.13g  9721  elhf2  36136
  Copyright terms: Public domain W3C validator