Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tz9.13 | Structured version Visualization version GIF version |
Description: Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.) |
Ref | Expression |
---|---|
tz9.13.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tz9.13 | ⊢ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.13.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | setind 9423 | . . . 4 ⊢ (∀𝑧(𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)}) → {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} = V) | |
3 | ssel 3910 | . . . . . . . 8 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → (𝑤 ∈ 𝑧 → 𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)})) | |
4 | vex 3426 | . . . . . . . . 9 ⊢ 𝑤 ∈ V | |
5 | eleq1 2826 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝑤 ∈ (𝑅1‘𝑥))) | |
6 | 5 | rexbidv 3225 | . . . . . . . . 9 ⊢ (𝑦 = 𝑤 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥))) |
7 | 4, 6 | elab 3602 | . . . . . . . 8 ⊢ (𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥)) |
8 | 3, 7 | syl6ib 250 | . . . . . . 7 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → (𝑤 ∈ 𝑧 → ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥))) |
9 | 8 | ralrimiv 3106 | . . . . . 6 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → ∀𝑤 ∈ 𝑧 ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥)) |
10 | vex 3426 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
11 | 10 | tz9.12 9479 | . . . . . 6 ⊢ (∀𝑤 ∈ 𝑧 ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥) → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
12 | 9, 11 | syl 17 | . . . . 5 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
13 | eleq1 2826 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝑧 ∈ (𝑅1‘𝑥))) | |
14 | 13 | rexbidv 3225 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥))) |
15 | 10, 14 | elab 3602 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
16 | 12, 15 | sylibr 233 | . . . 4 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)}) |
17 | 2, 16 | mpg 1801 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} = V |
18 | 1, 17 | eleqtrri 2838 | . 2 ⊢ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} |
19 | eleq1 2826 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝐴 ∈ (𝑅1‘𝑥))) | |
20 | 19 | rexbidv 3225 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥))) |
21 | 1, 20 | elab 3602 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) |
22 | 18, 21 | mpbi 229 | 1 ⊢ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 Oncon0 6251 ‘cfv 6418 𝑅1cr1 9451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 |
This theorem is referenced by: tz9.13g 9481 elhf2 34404 |
Copyright terms: Public domain | W3C validator |