| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz9.13 | Structured version Visualization version GIF version | ||
| Description: Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.) |
| Ref | Expression |
|---|---|
| tz9.13.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tz9.13 | ⊢ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.13.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | setind 9630 | . . . 4 ⊢ (∀𝑧(𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)}) → {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} = V) | |
| 3 | ssel 3929 | . . . . . . . 8 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → (𝑤 ∈ 𝑧 → 𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)})) | |
| 4 | vex 3440 | . . . . . . . . 9 ⊢ 𝑤 ∈ V | |
| 5 | eleq1 2816 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝑤 ∈ (𝑅1‘𝑥))) | |
| 6 | 5 | rexbidv 3153 | . . . . . . . . 9 ⊢ (𝑦 = 𝑤 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥))) |
| 7 | 4, 6 | elab 3635 | . . . . . . . 8 ⊢ (𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥)) |
| 8 | 3, 7 | imbitrdi 251 | . . . . . . 7 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → (𝑤 ∈ 𝑧 → ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥))) |
| 9 | 8 | ralrimiv 3120 | . . . . . 6 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → ∀𝑤 ∈ 𝑧 ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥)) |
| 10 | vex 3440 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 11 | 10 | tz9.12 9686 | . . . . . 6 ⊢ (∀𝑤 ∈ 𝑧 ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥) → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
| 12 | 9, 11 | syl 17 | . . . . 5 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
| 13 | eleq1 2816 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝑧 ∈ (𝑅1‘𝑥))) | |
| 14 | 13 | rexbidv 3153 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥))) |
| 15 | 10, 14 | elab 3635 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
| 16 | 12, 15 | sylibr 234 | . . . 4 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)}) |
| 17 | 2, 16 | mpg 1797 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} = V |
| 18 | 1, 17 | eleqtrri 2827 | . 2 ⊢ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} |
| 19 | eleq1 2816 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝐴 ∈ (𝑅1‘𝑥))) | |
| 20 | 19 | rexbidv 3153 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥))) |
| 21 | 1, 20 | elab 3635 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) |
| 22 | 18, 21 | mpbi 230 | 1 ⊢ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3436 ⊆ wss 3903 Oncon0 6307 ‘cfv 6482 𝑅1cr1 9658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-reg 9484 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-r1 9660 |
| This theorem is referenced by: tz9.13g 9688 elhf2 36149 |
| Copyright terms: Public domain | W3C validator |