Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tz9.13 | Structured version Visualization version GIF version |
Description: Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.) |
Ref | Expression |
---|---|
tz9.13.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tz9.13 | ⊢ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.13.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | setind 9242 | . . . 4 ⊢ (∀𝑧(𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)}) → {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} = V) | |
3 | ssel 3868 | . . . . . . . 8 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → (𝑤 ∈ 𝑧 → 𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)})) | |
4 | vex 3401 | . . . . . . . . 9 ⊢ 𝑤 ∈ V | |
5 | eleq1 2820 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝑤 ∈ (𝑅1‘𝑥))) | |
6 | 5 | rexbidv 3206 | . . . . . . . . 9 ⊢ (𝑦 = 𝑤 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥))) |
7 | 4, 6 | elab 3571 | . . . . . . . 8 ⊢ (𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥)) |
8 | 3, 7 | syl6ib 254 | . . . . . . 7 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → (𝑤 ∈ 𝑧 → ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥))) |
9 | 8 | ralrimiv 3095 | . . . . . 6 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → ∀𝑤 ∈ 𝑧 ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥)) |
10 | vex 3401 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
11 | 10 | tz9.12 9285 | . . . . . 6 ⊢ (∀𝑤 ∈ 𝑧 ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥) → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
12 | 9, 11 | syl 17 | . . . . 5 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
13 | eleq1 2820 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝑧 ∈ (𝑅1‘𝑥))) | |
14 | 13 | rexbidv 3206 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥))) |
15 | 10, 14 | elab 3571 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
16 | 12, 15 | sylibr 237 | . . . 4 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)}) |
17 | 2, 16 | mpg 1804 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} = V |
18 | 1, 17 | eleqtrri 2832 | . 2 ⊢ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} |
19 | eleq1 2820 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝐴 ∈ (𝑅1‘𝑥))) | |
20 | 19 | rexbidv 3206 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥))) |
21 | 1, 20 | elab 3571 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) |
22 | 18, 21 | mpbi 233 | 1 ⊢ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 {cab 2716 ∀wral 3053 ∃wrex 3054 Vcvv 3397 ⊆ wss 3841 Oncon0 6166 ‘cfv 6333 𝑅1cr1 9257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-reg 9122 ax-inf2 9170 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-om 7594 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-r1 9259 |
This theorem is referenced by: tz9.13g 9287 elhf2 34107 |
Copyright terms: Public domain | W3C validator |