MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.13 Structured version   Visualization version   GIF version

Theorem tz9.13 9480
Description: Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.)
Hypothesis
Ref Expression
tz9.13.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.13 𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem tz9.13
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.13.1 . . 3 𝐴 ∈ V
2 setind 9423 . . . 4 (∀𝑧(𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)}) → {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} = V)
3 ssel 3910 . . . . . . . 8 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → (𝑤𝑧𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)}))
4 vex 3426 . . . . . . . . 9 𝑤 ∈ V
5 eleq1 2826 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦 ∈ (𝑅1𝑥) ↔ 𝑤 ∈ (𝑅1𝑥)))
65rexbidv 3225 . . . . . . . . 9 (𝑦 = 𝑤 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥)))
74, 6elab 3602 . . . . . . . 8 (𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥))
83, 7syl6ib 250 . . . . . . 7 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → (𝑤𝑧 → ∃𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥)))
98ralrimiv 3106 . . . . . 6 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → ∀𝑤𝑧𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥))
10 vex 3426 . . . . . . 7 𝑧 ∈ V
1110tz9.12 9479 . . . . . 6 (∀𝑤𝑧𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥) → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1𝑥))
129, 11syl 17 . . . . 5 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1𝑥))
13 eleq1 2826 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 ∈ (𝑅1𝑥) ↔ 𝑧 ∈ (𝑅1𝑥)))
1413rexbidv 3225 . . . . . 6 (𝑦 = 𝑧 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1𝑥)))
1510, 14elab 3602 . . . . 5 (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1𝑥))
1612, 15sylibr 233 . . . 4 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)})
172, 16mpg 1801 . . 3 {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} = V
181, 17eleqtrri 2838 . 2 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)}
19 eleq1 2826 . . . 4 (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1𝑥) ↔ 𝐴 ∈ (𝑅1𝑥)))
2019rexbidv 3225 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)))
211, 20elab 3602 . 2 (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
2218, 21mpbi 229 1 𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  wss 3883  Oncon0 6251  cfv 6418  𝑅1cr1 9451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453
This theorem is referenced by:  tz9.13g  9481  elhf2  34404
  Copyright terms: Public domain W3C validator