![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz9.13 | Structured version Visualization version GIF version |
Description: Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.) |
Ref | Expression |
---|---|
tz9.13.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tz9.13 | ⊢ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.13.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | setind 9735 | . . . 4 ⊢ (∀𝑧(𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)}) → {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} = V) | |
3 | ssel 3975 | . . . . . . . 8 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → (𝑤 ∈ 𝑧 → 𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)})) | |
4 | vex 3477 | . . . . . . . . 9 ⊢ 𝑤 ∈ V | |
5 | eleq1 2820 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝑤 ∈ (𝑅1‘𝑥))) | |
6 | 5 | rexbidv 3177 | . . . . . . . . 9 ⊢ (𝑦 = 𝑤 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥))) |
7 | 4, 6 | elab 3668 | . . . . . . . 8 ⊢ (𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥)) |
8 | 3, 7 | imbitrdi 250 | . . . . . . 7 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → (𝑤 ∈ 𝑧 → ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥))) |
9 | 8 | ralrimiv 3144 | . . . . . 6 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → ∀𝑤 ∈ 𝑧 ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥)) |
10 | vex 3477 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
11 | 10 | tz9.12 9791 | . . . . . 6 ⊢ (∀𝑤 ∈ 𝑧 ∃𝑥 ∈ On 𝑤 ∈ (𝑅1‘𝑥) → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
12 | 9, 11 | syl 17 | . . . . 5 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
13 | eleq1 2820 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝑧 ∈ (𝑅1‘𝑥))) | |
14 | 13 | rexbidv 3177 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥))) |
15 | 10, 14 | elab 3668 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1‘𝑥)) |
16 | 12, 15 | sylibr 233 | . . . 4 ⊢ (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)}) |
17 | 2, 16 | mpg 1798 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} = V |
18 | 1, 17 | eleqtrri 2831 | . 2 ⊢ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} |
19 | eleq1 2820 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1‘𝑥) ↔ 𝐴 ∈ (𝑅1‘𝑥))) | |
20 | 19 | rexbidv 3177 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥))) |
21 | 1, 20 | elab 3668 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)} ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) |
22 | 18, 21 | mpbi 229 | 1 ⊢ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {cab 2708 ∀wral 3060 ∃wrex 3069 Vcvv 3473 ⊆ wss 3948 Oncon0 6364 ‘cfv 6543 𝑅1cr1 9763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-reg 9593 ax-inf2 9642 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-r1 9765 |
This theorem is referenced by: tz9.13g 9793 elhf2 35617 |
Copyright terms: Public domain | W3C validator |