MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.13 Structured version   Visualization version   GIF version

Theorem tz9.13 9204
Description: Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.)
Hypothesis
Ref Expression
tz9.13.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.13 𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem tz9.13
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.13.1 . . 3 𝐴 ∈ V
2 setind 9160 . . . 4 (∀𝑧(𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)}) → {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} = V)
3 ssel 3908 . . . . . . . 8 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → (𝑤𝑧𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)}))
4 vex 3444 . . . . . . . . 9 𝑤 ∈ V
5 eleq1 2877 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦 ∈ (𝑅1𝑥) ↔ 𝑤 ∈ (𝑅1𝑥)))
65rexbidv 3256 . . . . . . . . 9 (𝑦 = 𝑤 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥)))
74, 6elab 3615 . . . . . . . 8 (𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} ↔ ∃𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥))
83, 7syl6ib 254 . . . . . . 7 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → (𝑤𝑧 → ∃𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥)))
98ralrimiv 3148 . . . . . 6 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → ∀𝑤𝑧𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥))
10 vex 3444 . . . . . . 7 𝑧 ∈ V
1110tz9.12 9203 . . . . . 6 (∀𝑤𝑧𝑥 ∈ On 𝑤 ∈ (𝑅1𝑥) → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1𝑥))
129, 11syl 17 . . . . 5 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → ∃𝑥 ∈ On 𝑧 ∈ (𝑅1𝑥))
13 eleq1 2877 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 ∈ (𝑅1𝑥) ↔ 𝑧 ∈ (𝑅1𝑥)))
1413rexbidv 3256 . . . . . 6 (𝑦 = 𝑧 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1𝑥)))
1510, 14elab 3615 . . . . 5 (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} ↔ ∃𝑥 ∈ On 𝑧 ∈ (𝑅1𝑥))
1612, 15sylibr 237 . . . 4 (𝑧 ⊆ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} → 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)})
172, 16mpg 1799 . . 3 {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} = V
181, 17eleqtrri 2889 . 2 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)}
19 eleq1 2877 . . . 4 (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1𝑥) ↔ 𝐴 ∈ (𝑅1𝑥)))
2019rexbidv 3256 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)))
211, 20elab 3615 . 2 (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)} ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
2218, 21mpbi 233 1 𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  Vcvv 3441  wss 3881  Oncon0 6159  cfv 6324  𝑅1cr1 9175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-r1 9177
This theorem is referenced by:  tz9.13g  9205  elhf2  33749
  Copyright terms: Public domain W3C validator