MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r10 Structured version   Visualization version   GIF version

Theorem r10 9799
Description: Value of the cumulative hierarchy of sets function at . Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
Assertion
Ref Expression
r10 (𝑅1‘∅) = ∅

Proof of Theorem r10
StepHypRef Expression
1 df-r1 9795 . . 3 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
21fveq1i 6903 . 2 (𝑅1‘∅) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘∅)
3 0ex 5311 . . 3 ∅ ∈ V
43rdg0 8448 . 2 (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘∅) = ∅
52, 4eqtri 2756 1 (𝑅1‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  Vcvv 3473  c0 4326  𝒫 cpw 4606  cmpt 5235  cfv 6553  reccrdg 8436  𝑅1cr1 9793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-r1 9795
This theorem is referenced by:  r1fin  9804  r1tr  9807  r1pwss  9815  r1val1  9817  rankeq0b  9891  ackbij2lem2  10271  ackbij2lem3  10272  wunr1om  10750  r1wunlim  10768  tskr1om  10798  inar1  10806  r1tskina  10813  grur1a  10850  grothomex  10860  rankeq1o  35800  grur1cld  43700
  Copyright terms: Public domain W3C validator