| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r10 | Structured version Visualization version GIF version | ||
| Description: Value of the cumulative hierarchy of sets function at ∅. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
| Ref | Expression |
|---|---|
| r10 | ⊢ (𝑅1‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r1 9652 | . . 3 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 2 | 1 | fveq1i 6818 | . 2 ⊢ (𝑅1‘∅) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘∅) |
| 3 | 0ex 5240 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 3 | rdg0 8335 | . 2 ⊢ (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘∅) = ∅ |
| 5 | 2, 4 | eqtri 2754 | 1 ⊢ (𝑅1‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∅c0 4278 𝒫 cpw 4545 ↦ cmpt 5167 ‘cfv 6476 reccrdg 8323 𝑅1cr1 9650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-r1 9652 |
| This theorem is referenced by: r1fin 9661 r1tr 9664 r1pwss 9672 r1val1 9674 rankeq0b 9748 ackbij2lem2 10125 ackbij2lem3 10126 wunr1om 10605 r1wunlim 10623 tskr1om 10653 inar1 10661 r1tskina 10668 grur1a 10705 grothomex 10715 r11 35097 rankeq1o 36205 grur1cld 44265 |
| Copyright terms: Public domain | W3C validator |