MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r10 Structured version   Visualization version   GIF version

Theorem r10 9173
Description: Value of the cumulative hierarchy of sets function at . Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
Assertion
Ref Expression
r10 (𝑅1‘∅) = ∅

Proof of Theorem r10
StepHypRef Expression
1 df-r1 9169 . . 3 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
21fveq1i 6645 . 2 (𝑅1‘∅) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘∅)
3 0ex 5185 . . 3 ∅ ∈ V
43rdg0 8033 . 2 (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘∅) = ∅
52, 4eqtri 2843 1 (𝑅1‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3473  c0 4267  𝒫 cpw 4513  cmpt 5120  cfv 6329  reccrdg 8021  𝑅1cr1 9167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-pss 3930  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4813  df-iun 4895  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5434  df-eprel 5439  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6122  df-ord 6168  df-on 6169  df-lim 6170  df-suc 6171  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-om 7557  df-wrecs 7923  df-recs 7984  df-rdg 8022  df-r1 9169
This theorem is referenced by:  r1fin  9178  r1tr  9181  r1pwss  9189  r1val1  9191  rankeq0b  9265  ackbij2lem2  9638  ackbij2lem3  9639  wunr1om  10117  r1wunlim  10135  tskr1om  10165  inar1  10173  r1tskina  10180  grur1a  10217  grothomex  10227  rankeq1o  33637  grur1cld  40710
  Copyright terms: Public domain W3C validator