![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r10 | Structured version Visualization version GIF version |
Description: Value of the cumulative hierarchy of sets function at ∅. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
Ref | Expression |
---|---|
r10 | ⊢ (𝑅1‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r1 9795 | . . 3 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
2 | 1 | fveq1i 6903 | . 2 ⊢ (𝑅1‘∅) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘∅) |
3 | 0ex 5311 | . . 3 ⊢ ∅ ∈ V | |
4 | 3 | rdg0 8448 | . 2 ⊢ (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘∅) = ∅ |
5 | 2, 4 | eqtri 2756 | 1 ⊢ (𝑅1‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 Vcvv 3473 ∅c0 4326 𝒫 cpw 4606 ↦ cmpt 5235 ‘cfv 6553 reccrdg 8436 𝑅1cr1 9793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-r1 9795 |
This theorem is referenced by: r1fin 9804 r1tr 9807 r1pwss 9815 r1val1 9817 rankeq0b 9891 ackbij2lem2 10271 ackbij2lem3 10272 wunr1om 10750 r1wunlim 10768 tskr1om 10798 inar1 10806 r1tskina 10813 grur1a 10850 grothomex 10860 rankeq1o 35800 grur1cld 43700 |
Copyright terms: Public domain | W3C validator |