![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r10 | Structured version Visualization version GIF version |
Description: Value of the cumulative hierarchy of sets function at ∅. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
Ref | Expression |
---|---|
r10 | ⊢ (𝑅1‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r1 9763 | . . 3 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
2 | 1 | fveq1i 6893 | . 2 ⊢ (𝑅1‘∅) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘∅) |
3 | 0ex 5308 | . . 3 ⊢ ∅ ∈ V | |
4 | 3 | rdg0 8425 | . 2 ⊢ (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘∅) = ∅ |
5 | 2, 4 | eqtri 2758 | 1 ⊢ (𝑅1‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3472 ∅c0 4323 𝒫 cpw 4603 ↦ cmpt 5232 ‘cfv 6544 reccrdg 8413 𝑅1cr1 9761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-r1 9763 |
This theorem is referenced by: r1fin 9772 r1tr 9775 r1pwss 9783 r1val1 9785 rankeq0b 9859 ackbij2lem2 10239 ackbij2lem3 10240 wunr1om 10718 r1wunlim 10736 tskr1om 10766 inar1 10774 r1tskina 10781 grur1a 10818 grothomex 10828 rankeq1o 35445 grur1cld 43295 |
Copyright terms: Public domain | W3C validator |