| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r10 | Structured version Visualization version GIF version | ||
| Description: Value of the cumulative hierarchy of sets function at ∅. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
| Ref | Expression |
|---|---|
| r10 | ⊢ (𝑅1‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r1 9770 | . . 3 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 2 | 1 | fveq1i 6873 | . 2 ⊢ (𝑅1‘∅) = (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘∅) |
| 3 | 0ex 5274 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 3 | rdg0 8429 | . 2 ⊢ (rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)‘∅) = ∅ |
| 5 | 2, 4 | eqtri 2757 | 1 ⊢ (𝑅1‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 Vcvv 3457 ∅c0 4306 𝒫 cpw 4573 ↦ cmpt 5198 ‘cfv 6527 reccrdg 8417 𝑅1cr1 9768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-r1 9770 |
| This theorem is referenced by: r1fin 9779 r1tr 9782 r1pwss 9790 r1val1 9792 rankeq0b 9866 ackbij2lem2 10245 ackbij2lem3 10246 wunr1om 10725 r1wunlim 10743 tskr1om 10773 inar1 10781 r1tskina 10788 grur1a 10825 grothomex 10835 rankeq1o 36110 grur1cld 44182 |
| Copyright terms: Public domain | W3C validator |