MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1fnon Structured version   Visualization version   GIF version

Theorem r1fnon 9807
Description: The cumulative hierarchy of sets function is a function on the class of ordinal numbers. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
Assertion
Ref Expression
r1fnon 𝑅1 Fn On

Proof of Theorem r1fnon
StepHypRef Expression
1 rdgfnon 8458 . 2 rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On
2 df-r1 9804 . . 3 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
32fneq1i 6665 . 2 (𝑅1 Fn On ↔ rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On)
41, 3mpbir 231 1 𝑅1 Fn On
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3480  c0 4333  𝒫 cpw 4600  cmpt 5225  Oncon0 6384   Fn wfn 6556  reccrdg 8449  𝑅1cr1 9802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-r1 9804
This theorem is referenced by:  r1suc  9810  r1lim  9812  r111  9815  r1ord  9820  r1ord3  9822  r1elss  9846  jech9.3  9854  onwf  9870  ssrankr1  9875  r1val3  9878  r1pw  9885  rankuni  9903  rankr1b  9904  r1om  10283  hsmexlem6  10471  smobeth  10626  wunr1om  10759  r1limwun  10776  r1wunlim  10777  tskr1om  10807  tskr1om2  10808  inar1  10815  rankcf  10817  inatsk  10818  r1tskina  10822  grur1  10860  grothomex  10869  aomclem4  43069  grur1cld  44251
  Copyright terms: Public domain W3C validator