| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1fnon | Structured version Visualization version GIF version | ||
| Description: The cumulative hierarchy of sets function is a function on the class of ordinal numbers. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
| Ref | Expression |
|---|---|
| r1fnon | ⊢ 𝑅1 Fn On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfnon 8458 | . 2 ⊢ rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On | |
| 2 | df-r1 9804 | . . 3 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 3 | 2 | fneq1i 6665 | . 2 ⊢ (𝑅1 Fn On ↔ rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝑅1 Fn On |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3480 ∅c0 4333 𝒫 cpw 4600 ↦ cmpt 5225 Oncon0 6384 Fn wfn 6556 reccrdg 8449 𝑅1cr1 9802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-r1 9804 |
| This theorem is referenced by: r1suc 9810 r1lim 9812 r111 9815 r1ord 9820 r1ord3 9822 r1elss 9846 jech9.3 9854 onwf 9870 ssrankr1 9875 r1val3 9878 r1pw 9885 rankuni 9903 rankr1b 9904 r1om 10283 hsmexlem6 10471 smobeth 10626 wunr1om 10759 r1limwun 10776 r1wunlim 10777 tskr1om 10807 tskr1om2 10808 inar1 10815 rankcf 10817 inatsk 10818 r1tskina 10822 grur1 10860 grothomex 10869 aomclem4 43069 grur1cld 44251 |
| Copyright terms: Public domain | W3C validator |