MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1fnon Structured version   Visualization version   GIF version

Theorem r1fnon 9720
Description: The cumulative hierarchy of sets function is a function on the class of ordinal numbers. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
Assertion
Ref Expression
r1fnon 𝑅1 Fn On

Proof of Theorem r1fnon
StepHypRef Expression
1 rdgfnon 8386 . 2 rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On
2 df-r1 9717 . . 3 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
32fneq1i 6615 . 2 (𝑅1 Fn On ↔ rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On)
41, 3mpbir 231 1 𝑅1 Fn On
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3447  c0 4296  𝒫 cpw 4563  cmpt 5188  Oncon0 6332   Fn wfn 6506  reccrdg 8377  𝑅1cr1 9715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-r1 9717
This theorem is referenced by:  r1suc  9723  r1lim  9725  r111  9728  r1ord  9733  r1ord3  9735  r1elss  9759  jech9.3  9767  onwf  9783  ssrankr1  9788  r1val3  9791  r1pw  9798  rankuni  9816  rankr1b  9817  r1om  10196  hsmexlem6  10384  smobeth  10539  wunr1om  10672  r1limwun  10689  r1wunlim  10690  tskr1om  10720  tskr1om2  10721  inar1  10728  rankcf  10730  inatsk  10731  r1tskina  10735  grur1  10773  grothomex  10782  aomclem4  43046  grur1cld  44221
  Copyright terms: Public domain W3C validator