| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1fnon | Structured version Visualization version GIF version | ||
| Description: The cumulative hierarchy of sets function is a function on the class of ordinal numbers. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
| Ref | Expression |
|---|---|
| r1fnon | ⊢ 𝑅1 Fn On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfnon 8343 | . 2 ⊢ rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On | |
| 2 | df-r1 9664 | . . 3 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 3 | 2 | fneq1i 6583 | . 2 ⊢ (𝑅1 Fn On ↔ rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝑅1 Fn On |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3437 ∅c0 4282 𝒫 cpw 4549 ↦ cmpt 5174 Oncon0 6311 Fn wfn 6481 reccrdg 8334 𝑅1cr1 9662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-r1 9664 |
| This theorem is referenced by: r1suc 9670 r1lim 9672 r111 9675 r1ord 9680 r1ord3 9682 r1elss 9706 jech9.3 9714 onwf 9730 ssrankr1 9735 r1val3 9738 r1pw 9745 rankuni 9763 rankr1b 9764 r1om 10141 hsmexlem6 10329 smobeth 10484 wunr1om 10617 r1limwun 10634 r1wunlim 10635 tskr1om 10665 tskr1om2 10666 inar1 10673 rankcf 10675 inatsk 10676 r1tskina 10680 grur1 10718 grothomex 10727 r1wf 35128 r1elcl 35130 aomclem4 43174 grur1cld 44349 |
| Copyright terms: Public domain | W3C validator |