MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1fnon Structured version   Visualization version   GIF version

Theorem r1fnon 9667
Description: The cumulative hierarchy of sets function is a function on the class of ordinal numbers. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
Assertion
Ref Expression
r1fnon 𝑅1 Fn On

Proof of Theorem r1fnon
StepHypRef Expression
1 rdgfnon 8343 . 2 rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On
2 df-r1 9664 . . 3 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
32fneq1i 6583 . 2 (𝑅1 Fn On ↔ rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On)
41, 3mpbir 231 1 𝑅1 Fn On
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3437  c0 4282  𝒫 cpw 4549  cmpt 5174  Oncon0 6311   Fn wfn 6481  reccrdg 8334  𝑅1cr1 9662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-r1 9664
This theorem is referenced by:  r1suc  9670  r1lim  9672  r111  9675  r1ord  9680  r1ord3  9682  r1elss  9706  jech9.3  9714  onwf  9730  ssrankr1  9735  r1val3  9738  r1pw  9745  rankuni  9763  rankr1b  9764  r1om  10141  hsmexlem6  10329  smobeth  10484  wunr1om  10617  r1limwun  10634  r1wunlim  10635  tskr1om  10665  tskr1om2  10666  inar1  10673  rankcf  10675  inatsk  10676  r1tskina  10680  grur1  10718  grothomex  10727  r1wf  35128  r1elcl  35130  aomclem4  43174  grur1cld  44349
  Copyright terms: Public domain W3C validator