MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1fnon Structured version   Visualization version   GIF version

Theorem r1fnon 9456
Description: The cumulative hierarchy of sets function is a function on the class of ordinal numbers. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
Assertion
Ref Expression
r1fnon 𝑅1 Fn On

Proof of Theorem r1fnon
StepHypRef Expression
1 rdgfnon 8220 . 2 rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On
2 df-r1 9453 . . 3 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
32fneq1i 6514 . 2 (𝑅1 Fn On ↔ rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On)
41, 3mpbir 230 1 𝑅1 Fn On
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3422  c0 4253  𝒫 cpw 4530  cmpt 5153  Oncon0 6251   Fn wfn 6413  reccrdg 8211  𝑅1cr1 9451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453
This theorem is referenced by:  r1suc  9459  r1lim  9461  r111  9464  r1ord  9469  r1ord3  9471  r1elss  9495  jech9.3  9503  onwf  9519  ssrankr1  9524  r1val3  9527  r1pw  9534  rankuni  9552  rankr1b  9553  r1om  9931  hsmexlem6  10118  smobeth  10273  wunr1om  10406  r1limwun  10423  r1wunlim  10424  tskr1om  10454  tskr1om2  10455  inar1  10462  rankcf  10464  inatsk  10465  r1tskina  10469  grur1  10507  grothomex  10516  aomclem4  40798  grur1cld  41739
  Copyright terms: Public domain W3C validator