Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r1fnon | Structured version Visualization version GIF version |
Description: The cumulative hierarchy of sets function is a function on the class of ordinal numbers. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
Ref | Expression |
---|---|
r1fnon | ⊢ 𝑅1 Fn On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfnon 8249 | . 2 ⊢ rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On | |
2 | df-r1 9522 | . . 3 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
3 | 2 | fneq1i 6530 | . 2 ⊢ (𝑅1 Fn On ↔ rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On) |
4 | 1, 3 | mpbir 230 | 1 ⊢ 𝑅1 Fn On |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3432 ∅c0 4256 𝒫 cpw 4533 ↦ cmpt 5157 Oncon0 6266 Fn wfn 6428 reccrdg 8240 𝑅1cr1 9520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-r1 9522 |
This theorem is referenced by: r1suc 9528 r1lim 9530 r111 9533 r1ord 9538 r1ord3 9540 r1elss 9564 jech9.3 9572 onwf 9588 ssrankr1 9593 r1val3 9596 r1pw 9603 rankuni 9621 rankr1b 9622 r1om 10000 hsmexlem6 10187 smobeth 10342 wunr1om 10475 r1limwun 10492 r1wunlim 10493 tskr1om 10523 tskr1om2 10524 inar1 10531 rankcf 10533 inatsk 10534 r1tskina 10538 grur1 10576 grothomex 10585 aomclem4 40882 grur1cld 41850 |
Copyright terms: Public domain | W3C validator |