| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1fnon | Structured version Visualization version GIF version | ||
| Description: The cumulative hierarchy of sets function is a function on the class of ordinal numbers. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
| Ref | Expression |
|---|---|
| r1fnon | ⊢ 𝑅1 Fn On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfnon 8337 | . 2 ⊢ rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On | |
| 2 | df-r1 9654 | . . 3 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
| 3 | 2 | fneq1i 6578 | . 2 ⊢ (𝑅1 Fn On ↔ rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 𝑅1 Fn On |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ∅c0 4283 𝒫 cpw 4550 ↦ cmpt 5172 Oncon0 6306 Fn wfn 6476 reccrdg 8328 𝑅1cr1 9652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9654 |
| This theorem is referenced by: r1suc 9660 r1lim 9662 r111 9665 r1ord 9670 r1ord3 9672 r1elss 9696 jech9.3 9704 onwf 9720 ssrankr1 9725 r1val3 9728 r1pw 9735 rankuni 9753 rankr1b 9754 r1om 10131 hsmexlem6 10319 smobeth 10474 wunr1om 10607 r1limwun 10624 r1wunlim 10625 tskr1om 10655 tskr1om2 10656 inar1 10663 rankcf 10665 inatsk 10666 r1tskina 10670 grur1 10708 grothomex 10717 r1wf 35100 r1elcl 35102 aomclem4 43089 grur1cld 44264 |
| Copyright terms: Public domain | W3C validator |