![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1fnon | Structured version Visualization version GIF version |
Description: The cumulative hierarchy of sets function is a function on the class of ordinal numbers. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
Ref | Expression |
---|---|
r1fnon | ⊢ 𝑅1 Fn On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfnon 7913 | . 2 ⊢ rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On | |
2 | df-r1 9046 | . . 3 ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | |
3 | 2 | fneq1i 6327 | . 2 ⊢ (𝑅1 Fn On ↔ rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) Fn On) |
4 | 1, 3 | mpbir 232 | 1 ⊢ 𝑅1 Fn On |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3440 ∅c0 4217 𝒫 cpw 4459 ↦ cmpt 5047 Oncon0 6073 Fn wfn 6227 reccrdg 7904 𝑅1cr1 9044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-r1 9046 |
This theorem is referenced by: r1suc 9052 r1lim 9054 r111 9057 r1ord 9062 r1ord3 9064 r1elss 9088 jech9.3 9096 onwf 9112 ssrankr1 9117 r1val3 9120 r1pw 9127 rankuni 9145 rankr1b 9146 r1om 9519 hsmexlem6 9706 smobeth 9861 wunr1om 9994 r1limwun 10011 r1wunlim 10012 tskr1om 10042 tskr1om2 10043 inar1 10050 rankcf 10052 inatsk 10053 r1tskina 10057 grur1 10095 grothomex 10104 aomclem4 39163 grur1cld 40086 |
Copyright terms: Public domain | W3C validator |