| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1lim | Structured version Visualization version GIF version | ||
| Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| r1lim | ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limelon 6422 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) | |
| 2 | r1fnon 9786 | . . . 4 ⊢ 𝑅1 Fn On | |
| 3 | fndm 6646 | . . . 4 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ dom 𝑅1 = On |
| 5 | 1, 4 | eleqtrrdi 2846 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ dom 𝑅1) |
| 6 | r1limg 9790 | . 2 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) | |
| 7 | 5, 6 | sylancom 588 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ ciun 4972 dom cdm 5659 Oncon0 6357 Lim wlim 6358 Fn wfn 6531 ‘cfv 6536 𝑅1cr1 9781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-r1 9783 |
| This theorem is referenced by: r1sdom 9793 r1om 10262 inar1 10794 inatsk 10797 grur1a 10838 grur1cld 44231 |
| Copyright terms: Public domain | W3C validator |