![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1lim | Structured version Visualization version GIF version |
Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1lim | ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limelon 6427 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ On) | |
2 | r1fnon 9782 | . . . 4 ⊢ 𝑅1 Fn On | |
3 | fndm 6651 | . . . 4 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ dom 𝑅1 = On |
5 | 1, 4 | eleqtrrdi 2839 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → 𝐴 ∈ dom 𝑅1) |
6 | r1limg 9786 | . 2 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) | |
7 | 5, 6 | sylancom 587 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∪ ciun 4991 dom cdm 5672 Oncon0 6363 Lim wlim 6364 Fn wfn 6537 ‘cfv 6542 𝑅1cr1 9777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-r1 9779 |
This theorem is referenced by: r1sdom 9789 r1om 10259 inar1 10790 inatsk 10793 grur1a 10834 grur1cld 43592 |
Copyright terms: Public domain | W3C validator |