| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version | ||
| Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sum 15594 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
| 2 | iotaex 6457 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
| 3 | 1, 2 | eqeltri 2827 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ⦋csb 3850 ⊆ wss 3902 ifcif 4475 class class class wbr 5091 ↦ cmpt 5172 ℩cio 6435 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 ℕcn 12125 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 seqcseq 13908 ⇝ cli 15391 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-sn 4577 df-pr 4579 df-uni 4860 df-iota 6437 df-sum 15594 |
| This theorem is referenced by: fsumrlim 15718 fsumo1 15719 efval 15986 efcvgfsum 15993 eftlub 16018 bitsinv2 16354 bitsinv 16359 lebnumlem3 24890 isi1f 25603 itg1val 25612 itg1climres 25643 itgex 25699 itgfsum 25756 dvmptfsum 25907 plyeq0lem 26143 plyaddlem1 26146 plymullem1 26147 coeeulem 26157 coeid2 26172 plyco 26174 coemullem 26183 coemul 26185 aareccl 26262 aaliou3lem5 26283 aaliou3lem6 26284 aaliou3lem7 26285 taylpval 26302 psercn 26364 pserdvlem2 26366 pserdv 26367 abelthlem6 26374 abelthlem8 26377 abelthlem9 26378 logtayl 26597 leibpi 26880 basellem3 27021 chtval 27048 chpval 27060 sgmval 27080 muinv 27131 dchrvmasumlem1 27434 dchrisum0fval 27444 dchrisum0fno1 27450 dchrisum0lem3 27458 dchrisum0 27459 mulogsum 27471 logsqvma2 27482 selberglem1 27484 pntsval 27511 ecgrtg 28962 esumpcvgval 34089 esumcvg 34097 eulerpartlemsv1 34367 signsplypnf 34561 signsvvfval 34589 vtsval 34648 circlemeth 34651 fwddifnval 36203 knoppndvlem6 36557 binomcxplemnotnn0 44395 stoweidlem11 46055 stoweidlem26 46070 fourierdlem112 46262 fsumlesge0 46421 sge0sn 46423 sge0f1o 46426 sge0supre 46433 sge0resplit 46450 sge0reuz 46491 sge0reuzb 46492 aacllem 49839 |
| Copyright terms: Public domain | W3C validator |