| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version | ||
| Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sum 15701 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
| 2 | iotaex 6503 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
| 3 | 1, 2 | eqeltri 2830 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 ⦋csb 3874 ⊆ wss 3926 ifcif 4500 class class class wbr 5119 ↦ cmpt 5201 ℩cio 6481 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 0cc0 11127 1c1 11128 + caddc 11130 ℕcn 12238 ℤcz 12586 ℤ≥cuz 12850 ...cfz 13522 seqcseq 14017 ⇝ cli 15498 Σcsu 15700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-uni 4884 df-iota 6483 df-sum 15701 |
| This theorem is referenced by: fsumrlim 15825 fsumo1 15826 efval 16093 efcvgfsum 16100 eftlub 16125 bitsinv2 16460 bitsinv 16465 lebnumlem3 24911 isi1f 25625 itg1val 25634 itg1climres 25665 itgex 25721 itgfsum 25778 dvmptfsum 25929 plyeq0lem 26165 plyaddlem1 26168 plymullem1 26169 coeeulem 26179 coeid2 26194 plyco 26196 coemullem 26205 coemul 26207 aareccl 26284 aaliou3lem5 26305 aaliou3lem6 26306 aaliou3lem7 26307 taylpval 26324 psercn 26386 pserdvlem2 26388 pserdv 26389 abelthlem6 26396 abelthlem8 26399 abelthlem9 26400 logtayl 26619 leibpi 26902 basellem3 27043 chtval 27070 chpval 27082 sgmval 27102 muinv 27153 dchrvmasumlem1 27456 dchrisum0fval 27466 dchrisum0fno1 27472 dchrisum0lem3 27480 dchrisum0 27481 mulogsum 27493 logsqvma2 27504 selberglem1 27506 pntsval 27533 ecgrtg 28908 esumpcvgval 34055 esumcvg 34063 eulerpartlemsv1 34334 signsplypnf 34528 signsvvfval 34556 vtsval 34615 circlemeth 34618 fwddifnval 36127 knoppndvlem6 36481 binomcxplemnotnn0 44328 stoweidlem11 45988 stoweidlem26 46003 fourierdlem112 46195 fsumlesge0 46354 sge0sn 46356 sge0f1o 46359 sge0supre 46366 sge0resplit 46383 sge0reuz 46424 sge0reuzb 46425 aacllem 49613 |
| Copyright terms: Public domain | W3C validator |