MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumex Structured version   Visualization version   GIF version

Theorem sumex 15631
Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
sumex Σ𝑘𝐴 𝐵 ∈ V

Proof of Theorem sumex
Dummy variables 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 15630 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 iotaex 6514 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) ∈ V
31, 2eqeltri 2830 1 Σ𝑘𝐴 𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 397  wo 846   = wceq 1542  wex 1782  wcel 2107  wrex 3071  Vcvv 3475  csb 3893  wss 3948  ifcif 4528   class class class wbr 5148  cmpt 5231  cio 6491  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7406  0cc0 11107  1c1 11108   + caddc 11110  cn 12209  cz 12555  cuz 12819  ...cfz 13481  seqcseq 13963  cli 15425  Σcsu 15629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-sn 4629  df-pr 4631  df-uni 4909  df-iota 6493  df-sum 15630
This theorem is referenced by:  fsumrlim  15754  fsumo1  15755  efval  16020  efcvgfsum  16026  eftlub  16049  bitsinv2  16381  bitsinv  16386  lebnumlem3  24471  isi1f  25183  itg1val  25192  itg1climres  25224  itgex  25280  itgfsum  25336  dvmptfsum  25484  plyeq0lem  25716  plyaddlem1  25719  plymullem1  25720  coeeulem  25730  coeid2  25745  plyco  25747  coemullem  25756  coemul  25758  aareccl  25831  aaliou3lem5  25852  aaliou3lem6  25853  aaliou3lem7  25854  taylpval  25871  psercn  25930  pserdvlem2  25932  pserdv  25933  abelthlem6  25940  abelthlem8  25943  abelthlem9  25944  logtayl  26160  leibpi  26437  basellem3  26577  chtval  26604  chpval  26616  sgmval  26636  muinv  26687  dchrvmasumlem1  26988  dchrisum0fval  26998  dchrisum0fno1  27004  dchrisum0lem3  27012  dchrisum0  27013  mulogsum  27025  logsqvma2  27036  selberglem1  27038  pntsval  27065  ecgrtg  28231  esumpcvgval  33065  esumcvg  33073  eulerpartlemsv1  33344  signsplypnf  33550  signsvvfval  33578  vtsval  33638  circlemeth  33641  fwddifnval  35124  knoppndvlem6  35382  binomcxplemnotnn0  43101  stoweidlem11  44714  stoweidlem26  44729  fourierdlem112  44921  fsumlesge0  45080  sge0sn  45082  sge0f1o  45085  sge0supre  45092  sge0resplit  45109  sge0reuz  45150  sge0reuzb  45151  aacllem  47802
  Copyright terms: Public domain W3C validator