| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version | ||
| Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sum 15612 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
| 2 | iotaex 6462 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 ⦋csb 3853 ⊆ wss 3905 ifcif 4478 class class class wbr 5095 ↦ cmpt 5176 ℩cio 6440 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 ℕcn 12146 ℤcz 12489 ℤ≥cuz 12753 ...cfz 13428 seqcseq 13926 ⇝ cli 15409 Σcsu 15611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-sn 4580 df-pr 4582 df-uni 4862 df-iota 6442 df-sum 15612 |
| This theorem is referenced by: fsumrlim 15736 fsumo1 15737 efval 16004 efcvgfsum 16011 eftlub 16036 bitsinv2 16372 bitsinv 16377 lebnumlem3 24878 isi1f 25591 itg1val 25600 itg1climres 25631 itgex 25687 itgfsum 25744 dvmptfsum 25895 plyeq0lem 26131 plyaddlem1 26134 plymullem1 26135 coeeulem 26145 coeid2 26160 plyco 26162 coemullem 26171 coemul 26173 aareccl 26250 aaliou3lem5 26271 aaliou3lem6 26272 aaliou3lem7 26273 taylpval 26290 psercn 26352 pserdvlem2 26354 pserdv 26355 abelthlem6 26362 abelthlem8 26365 abelthlem9 26366 logtayl 26585 leibpi 26868 basellem3 27009 chtval 27036 chpval 27048 sgmval 27068 muinv 27119 dchrvmasumlem1 27422 dchrisum0fval 27432 dchrisum0fno1 27438 dchrisum0lem3 27446 dchrisum0 27447 mulogsum 27459 logsqvma2 27470 selberglem1 27472 pntsval 27499 ecgrtg 28946 esumpcvgval 34047 esumcvg 34055 eulerpartlemsv1 34326 signsplypnf 34520 signsvvfval 34548 vtsval 34607 circlemeth 34610 fwddifnval 36139 knoppndvlem6 36493 binomcxplemnotnn0 44332 stoweidlem11 45996 stoweidlem26 46011 fourierdlem112 46203 fsumlesge0 46362 sge0sn 46364 sge0f1o 46367 sge0supre 46374 sge0resplit 46391 sge0reuz 46432 sge0reuzb 46433 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |