Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version |
Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
Ref | Expression |
---|---|
sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sum 15398 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
2 | iotaex 6413 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∨ wo 844 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 ⦋csb 3832 ⊆ wss 3887 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 ℩cio 6389 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 ℕcn 11973 ℤcz 12319 ℤ≥cuz 12582 ...cfz 13239 seqcseq 13721 ⇝ cli 15193 Σcsu 15397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 df-sum 15398 |
This theorem is referenced by: fsumrlim 15523 fsumo1 15524 efval 15789 efcvgfsum 15795 eftlub 15818 bitsinv2 16150 bitsinv 16155 lebnumlem3 24126 isi1f 24838 itg1val 24847 itg1climres 24879 itgex 24935 itgfsum 24991 dvmptfsum 25139 plyeq0lem 25371 plyaddlem1 25374 plymullem1 25375 coeeulem 25385 coeid2 25400 plyco 25402 coemullem 25411 coemul 25413 aareccl 25486 aaliou3lem5 25507 aaliou3lem6 25508 aaliou3lem7 25509 taylpval 25526 psercn 25585 pserdvlem2 25587 pserdv 25588 abelthlem6 25595 abelthlem8 25598 abelthlem9 25599 logtayl 25815 leibpi 26092 basellem3 26232 chtval 26259 chpval 26271 sgmval 26291 muinv 26342 dchrvmasumlem1 26643 dchrisum0fval 26653 dchrisum0fno1 26659 dchrisum0lem3 26667 dchrisum0 26668 mulogsum 26680 logsqvma2 26691 selberglem1 26693 pntsval 26720 ecgrtg 27351 esumpcvgval 32046 esumcvg 32054 eulerpartlemsv1 32323 signsplypnf 32529 signsvvfval 32557 vtsval 32617 circlemeth 32620 fwddifnval 34465 knoppndvlem6 34697 binomcxplemnotnn0 41974 stoweidlem11 43552 stoweidlem26 43567 fourierdlem112 43759 fsumlesge0 43915 sge0sn 43917 sge0f1o 43920 sge0supre 43927 sge0resplit 43944 sge0reuz 43985 sge0reuzb 43986 aacllem 46505 |
Copyright terms: Public domain | W3C validator |