![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version |
Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
Ref | Expression |
---|---|
sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sum 14758 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
2 | iotaex 6081 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
3 | 1, 2 | eqeltri 2874 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 385 ∨ wo 874 = wceq 1653 ∃wex 1875 ∈ wcel 2157 ∃wrex 3090 Vcvv 3385 ⦋csb 3728 ⊆ wss 3769 ifcif 4277 class class class wbr 4843 ↦ cmpt 4922 ℩cio 6062 –1-1-onto→wf1o 6100 ‘cfv 6101 (class class class)co 6878 0cc0 10224 1c1 10225 + caddc 10227 ℕcn 11312 ℤcz 11666 ℤ≥cuz 11930 ...cfz 12580 seqcseq 13055 ⇝ cli 14556 Σcsu 14757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-nul 4983 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-sn 4369 df-pr 4371 df-uni 4629 df-iota 6064 df-sum 14758 |
This theorem is referenced by: fsumrlim 14881 fsumo1 14882 efval 15146 efcvgfsum 15152 eftlub 15175 bitsinv2 15500 bitsinv 15505 lebnumlem3 23090 isi1f 23782 itg1val 23791 itg1climres 23822 itgex 23878 itgfsum 23934 dvmptfsum 24079 plyeq0lem 24307 plyaddlem1 24310 plymullem1 24311 coeeulem 24321 coeid2 24336 plyco 24338 coemullem 24347 coemul 24349 aareccl 24422 aaliou3lem5 24443 aaliou3lem6 24444 aaliou3lem7 24445 taylpval 24462 psercn 24521 pserdvlem2 24523 pserdv 24524 abelthlem6 24531 abelthlem8 24534 abelthlem9 24535 logtayl 24747 leibpi 25021 basellem3 25161 chtval 25188 chpval 25200 sgmval 25220 muinv 25271 dchrvmasumlem1 25536 dchrisum0fval 25546 dchrisum0fno1 25552 dchrisum0lem3 25560 dchrisum0 25561 mulogsum 25573 logsqvma2 25584 selberglem1 25586 pntsval 25613 ecgrtg 26220 esumpcvgval 30656 esumcvg 30664 eulerpartlemsv1 30934 signsplypnf 31145 signsvvfval 31175 vtsval 31235 circlemeth 31238 fwddifnval 32783 knoppndvlem6 33016 binomcxplemnotnn0 39333 stoweidlem11 40967 stoweidlem26 40982 fourierdlem112 41174 fsumlesge0 41333 sge0sn 41335 sge0f1o 41338 sge0supre 41345 sge0resplit 41362 sge0reuz 41403 sge0reuzb 41404 aacllem 43345 |
Copyright terms: Public domain | W3C validator |