![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version |
Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
Ref | Expression |
---|---|
sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sum 15630 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
2 | iotaex 6514 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
3 | 1, 2 | eqeltri 2830 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∨ wo 846 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∃wrex 3071 Vcvv 3475 ⦋csb 3893 ⊆ wss 3948 ifcif 4528 class class class wbr 5148 ↦ cmpt 5231 ℩cio 6491 –1-1-onto→wf1o 6540 ‘cfv 6541 (class class class)co 7406 0cc0 11107 1c1 11108 + caddc 11110 ℕcn 12209 ℤcz 12555 ℤ≥cuz 12819 ...cfz 13481 seqcseq 13963 ⇝ cli 15425 Σcsu 15629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-sn 4629 df-pr 4631 df-uni 4909 df-iota 6493 df-sum 15630 |
This theorem is referenced by: fsumrlim 15754 fsumo1 15755 efval 16020 efcvgfsum 16026 eftlub 16049 bitsinv2 16381 bitsinv 16386 lebnumlem3 24471 isi1f 25183 itg1val 25192 itg1climres 25224 itgex 25280 itgfsum 25336 dvmptfsum 25484 plyeq0lem 25716 plyaddlem1 25719 plymullem1 25720 coeeulem 25730 coeid2 25745 plyco 25747 coemullem 25756 coemul 25758 aareccl 25831 aaliou3lem5 25852 aaliou3lem6 25853 aaliou3lem7 25854 taylpval 25871 psercn 25930 pserdvlem2 25932 pserdv 25933 abelthlem6 25940 abelthlem8 25943 abelthlem9 25944 logtayl 26160 leibpi 26437 basellem3 26577 chtval 26604 chpval 26616 sgmval 26636 muinv 26687 dchrvmasumlem1 26988 dchrisum0fval 26998 dchrisum0fno1 27004 dchrisum0lem3 27012 dchrisum0 27013 mulogsum 27025 logsqvma2 27036 selberglem1 27038 pntsval 27065 ecgrtg 28231 esumpcvgval 33065 esumcvg 33073 eulerpartlemsv1 33344 signsplypnf 33550 signsvvfval 33578 vtsval 33638 circlemeth 33641 fwddifnval 35124 knoppndvlem6 35382 binomcxplemnotnn0 43101 stoweidlem11 44714 stoweidlem26 44729 fourierdlem112 44921 fsumlesge0 45080 sge0sn 45082 sge0f1o 45085 sge0supre 45092 sge0resplit 45109 sge0reuz 45150 sge0reuzb 45151 aacllem 47802 |
Copyright terms: Public domain | W3C validator |