| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version | ||
| Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sum 15653 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
| 2 | iotaex 6484 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ⦋csb 3862 ⊆ wss 3914 ifcif 4488 class class class wbr 5107 ↦ cmpt 5188 ℩cio 6462 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 ℕcn 12186 ℤcz 12529 ℤ≥cuz 12793 ...cfz 13468 seqcseq 13966 ⇝ cli 15450 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-iota 6464 df-sum 15653 |
| This theorem is referenced by: fsumrlim 15777 fsumo1 15778 efval 16045 efcvgfsum 16052 eftlub 16077 bitsinv2 16413 bitsinv 16418 lebnumlem3 24862 isi1f 25575 itg1val 25584 itg1climres 25615 itgex 25671 itgfsum 25728 dvmptfsum 25879 plyeq0lem 26115 plyaddlem1 26118 plymullem1 26119 coeeulem 26129 coeid2 26144 plyco 26146 coemullem 26155 coemul 26157 aareccl 26234 aaliou3lem5 26255 aaliou3lem6 26256 aaliou3lem7 26257 taylpval 26274 psercn 26336 pserdvlem2 26338 pserdv 26339 abelthlem6 26346 abelthlem8 26349 abelthlem9 26350 logtayl 26569 leibpi 26852 basellem3 26993 chtval 27020 chpval 27032 sgmval 27052 muinv 27103 dchrvmasumlem1 27406 dchrisum0fval 27416 dchrisum0fno1 27422 dchrisum0lem3 27430 dchrisum0 27431 mulogsum 27443 logsqvma2 27454 selberglem1 27456 pntsval 27483 ecgrtg 28910 esumpcvgval 34068 esumcvg 34076 eulerpartlemsv1 34347 signsplypnf 34541 signsvvfval 34569 vtsval 34628 circlemeth 34631 fwddifnval 36151 knoppndvlem6 36505 binomcxplemnotnn0 44345 stoweidlem11 46009 stoweidlem26 46024 fourierdlem112 46216 fsumlesge0 46375 sge0sn 46377 sge0f1o 46380 sge0supre 46387 sge0resplit 46404 sge0reuz 46445 sge0reuzb 46446 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |