![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version |
Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
Ref | Expression |
---|---|
sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sum 15735 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
2 | iotaex 6546 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
3 | 1, 2 | eqeltri 2840 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ wo 846 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ⦋csb 3921 ⊆ wss 3976 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 ℩cio 6523 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 ℕcn 12293 ℤcz 12639 ℤ≥cuz 12903 ...cfz 13567 seqcseq 14052 ⇝ cli 15530 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 df-sum 15735 |
This theorem is referenced by: fsumrlim 15859 fsumo1 15860 efval 16127 efcvgfsum 16134 eftlub 16157 bitsinv2 16489 bitsinv 16494 lebnumlem3 25014 isi1f 25728 itg1val 25737 itg1climres 25769 itgex 25825 itgfsum 25882 dvmptfsum 26033 plyeq0lem 26269 plyaddlem1 26272 plymullem1 26273 coeeulem 26283 coeid2 26298 plyco 26300 coemullem 26309 coemul 26311 aareccl 26386 aaliou3lem5 26407 aaliou3lem6 26408 aaliou3lem7 26409 taylpval 26426 psercn 26488 pserdvlem2 26490 pserdv 26491 abelthlem6 26498 abelthlem8 26501 abelthlem9 26502 logtayl 26720 leibpi 27003 basellem3 27144 chtval 27171 chpval 27183 sgmval 27203 muinv 27254 dchrvmasumlem1 27557 dchrisum0fval 27567 dchrisum0fno1 27573 dchrisum0lem3 27581 dchrisum0 27582 mulogsum 27594 logsqvma2 27605 selberglem1 27607 pntsval 27634 ecgrtg 29016 esumpcvgval 34042 esumcvg 34050 eulerpartlemsv1 34321 signsplypnf 34527 signsvvfval 34555 vtsval 34614 circlemeth 34617 fwddifnval 36127 knoppndvlem6 36483 binomcxplemnotnn0 44325 stoweidlem11 45932 stoweidlem26 45947 fourierdlem112 46139 fsumlesge0 46298 sge0sn 46300 sge0f1o 46303 sge0supre 46310 sge0resplit 46327 sge0reuz 46368 sge0reuzb 46369 aacllem 48895 |
Copyright terms: Public domain | W3C validator |