Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version |
Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
Ref | Expression |
---|---|
sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sum 15326 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
2 | iotaex 6398 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ wo 843 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ⦋csb 3828 ⊆ wss 3883 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 ℩cio 6374 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 ℕcn 11903 ℤcz 12249 ℤ≥cuz 12511 ...cfz 13168 seqcseq 13649 ⇝ cli 15121 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-sum 15326 |
This theorem is referenced by: fsumrlim 15451 fsumo1 15452 efval 15717 efcvgfsum 15723 eftlub 15746 bitsinv2 16078 bitsinv 16083 lebnumlem3 24032 isi1f 24743 itg1val 24752 itg1climres 24784 itgex 24840 itgfsum 24896 dvmptfsum 25044 plyeq0lem 25276 plyaddlem1 25279 plymullem1 25280 coeeulem 25290 coeid2 25305 plyco 25307 coemullem 25316 coemul 25318 aareccl 25391 aaliou3lem5 25412 aaliou3lem6 25413 aaliou3lem7 25414 taylpval 25431 psercn 25490 pserdvlem2 25492 pserdv 25493 abelthlem6 25500 abelthlem8 25503 abelthlem9 25504 logtayl 25720 leibpi 25997 basellem3 26137 chtval 26164 chpval 26176 sgmval 26196 muinv 26247 dchrvmasumlem1 26548 dchrisum0fval 26558 dchrisum0fno1 26564 dchrisum0lem3 26572 dchrisum0 26573 mulogsum 26585 logsqvma2 26596 selberglem1 26598 pntsval 26625 ecgrtg 27254 esumpcvgval 31946 esumcvg 31954 eulerpartlemsv1 32223 signsplypnf 32429 signsvvfval 32457 vtsval 32517 circlemeth 32520 fwddifnval 34392 knoppndvlem6 34624 binomcxplemnotnn0 41863 stoweidlem11 43442 stoweidlem26 43457 fourierdlem112 43649 fsumlesge0 43805 sge0sn 43807 sge0f1o 43810 sge0supre 43817 sge0resplit 43834 sge0reuz 43875 sge0reuzb 43876 aacllem 46391 |
Copyright terms: Public domain | W3C validator |