| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version | ||
| Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sum 15660 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
| 2 | iotaex 6487 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
| 3 | 1, 2 | eqeltri 2825 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ⦋csb 3865 ⊆ wss 3917 ifcif 4491 class class class wbr 5110 ↦ cmpt 5191 ℩cio 6465 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 ℕcn 12193 ℤcz 12536 ℤ≥cuz 12800 ...cfz 13475 seqcseq 13973 ⇝ cli 15457 Σcsu 15659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-uni 4875 df-iota 6467 df-sum 15660 |
| This theorem is referenced by: fsumrlim 15784 fsumo1 15785 efval 16052 efcvgfsum 16059 eftlub 16084 bitsinv2 16420 bitsinv 16425 lebnumlem3 24869 isi1f 25582 itg1val 25591 itg1climres 25622 itgex 25678 itgfsum 25735 dvmptfsum 25886 plyeq0lem 26122 plyaddlem1 26125 plymullem1 26126 coeeulem 26136 coeid2 26151 plyco 26153 coemullem 26162 coemul 26164 aareccl 26241 aaliou3lem5 26262 aaliou3lem6 26263 aaliou3lem7 26264 taylpval 26281 psercn 26343 pserdvlem2 26345 pserdv 26346 abelthlem6 26353 abelthlem8 26356 abelthlem9 26357 logtayl 26576 leibpi 26859 basellem3 27000 chtval 27027 chpval 27039 sgmval 27059 muinv 27110 dchrvmasumlem1 27413 dchrisum0fval 27423 dchrisum0fno1 27429 dchrisum0lem3 27437 dchrisum0 27438 mulogsum 27450 logsqvma2 27461 selberglem1 27463 pntsval 27490 ecgrtg 28917 esumpcvgval 34075 esumcvg 34083 eulerpartlemsv1 34354 signsplypnf 34548 signsvvfval 34576 vtsval 34635 circlemeth 34638 fwddifnval 36158 knoppndvlem6 36512 binomcxplemnotnn0 44352 stoweidlem11 46016 stoweidlem26 46031 fourierdlem112 46223 fsumlesge0 46382 sge0sn 46384 sge0f1o 46387 sge0supre 46394 sge0resplit 46411 sge0reuz 46452 sge0reuzb 46453 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |