| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version | ||
| Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sum 15598 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
| 2 | iotaex 6464 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
| 3 | 1, 2 | eqeltri 2829 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 ⦋csb 3846 ⊆ wss 3898 ifcif 4476 class class class wbr 5095 ↦ cmpt 5176 ℩cio 6442 –1-1-onto→wf1o 6487 ‘cfv 6488 (class class class)co 7354 0cc0 11015 1c1 11016 + caddc 11018 ℕcn 12134 ℤcz 12477 ℤ≥cuz 12740 ...cfz 13411 seqcseq 13912 ⇝ cli 15395 Σcsu 15597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-sn 4578 df-pr 4580 df-uni 4861 df-iota 6444 df-sum 15598 |
| This theorem is referenced by: fsumrlim 15722 fsumo1 15723 efval 15990 efcvgfsum 15997 eftlub 16022 bitsinv2 16358 bitsinv 16363 lebnumlem3 24892 isi1f 25605 itg1val 25614 itg1climres 25645 itgex 25701 itgfsum 25758 dvmptfsum 25909 plyeq0lem 26145 plyaddlem1 26148 plymullem1 26149 coeeulem 26159 coeid2 26174 plyco 26176 coemullem 26185 coemul 26187 aareccl 26264 aaliou3lem5 26285 aaliou3lem6 26286 aaliou3lem7 26287 taylpval 26304 psercn 26366 pserdvlem2 26368 pserdv 26369 abelthlem6 26376 abelthlem8 26379 abelthlem9 26380 logtayl 26599 leibpi 26882 basellem3 27023 chtval 27050 chpval 27062 sgmval 27082 muinv 27133 dchrvmasumlem1 27436 dchrisum0fval 27446 dchrisum0fno1 27452 dchrisum0lem3 27460 dchrisum0 27461 mulogsum 27473 logsqvma2 27484 selberglem1 27486 pntsval 27513 ecgrtg 28965 esumpcvgval 34114 esumcvg 34122 eulerpartlemsv1 34392 signsplypnf 34586 signsvvfval 34614 vtsval 34673 circlemeth 34676 fwddifnval 36230 knoppndvlem6 36584 binomcxplemnotnn0 44476 stoweidlem11 46136 stoweidlem26 46151 fourierdlem112 46343 fsumlesge0 46502 sge0sn 46504 sge0f1o 46507 sge0supre 46514 sge0resplit 46531 sge0reuz 46572 sge0reuzb 46573 aacllem 49929 |
| Copyright terms: Public domain | W3C validator |