MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumex Structured version   Visualization version   GIF version

Theorem sumex 15327
Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
sumex Σ𝑘𝐴 𝐵 ∈ V

Proof of Theorem sumex
Dummy variables 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 15326 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 iotaex 6398 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) ∈ V
31, 2eqeltri 2835 1 Σ𝑘𝐴 𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 843   = wceq 1539  wex 1783  wcel 2108  wrex 3064  Vcvv 3422  csb 3828  wss 3883  ifcif 4456   class class class wbr 5070  cmpt 5153  cio 6374  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cn 11903  cz 12249  cuz 12511  ...cfz 13168  seqcseq 13649  cli 15121  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6376  df-sum 15326
This theorem is referenced by:  fsumrlim  15451  fsumo1  15452  efval  15717  efcvgfsum  15723  eftlub  15746  bitsinv2  16078  bitsinv  16083  lebnumlem3  24032  isi1f  24743  itg1val  24752  itg1climres  24784  itgex  24840  itgfsum  24896  dvmptfsum  25044  plyeq0lem  25276  plyaddlem1  25279  plymullem1  25280  coeeulem  25290  coeid2  25305  plyco  25307  coemullem  25316  coemul  25318  aareccl  25391  aaliou3lem5  25412  aaliou3lem6  25413  aaliou3lem7  25414  taylpval  25431  psercn  25490  pserdvlem2  25492  pserdv  25493  abelthlem6  25500  abelthlem8  25503  abelthlem9  25504  logtayl  25720  leibpi  25997  basellem3  26137  chtval  26164  chpval  26176  sgmval  26196  muinv  26247  dchrvmasumlem1  26548  dchrisum0fval  26558  dchrisum0fno1  26564  dchrisum0lem3  26572  dchrisum0  26573  mulogsum  26585  logsqvma2  26596  selberglem1  26598  pntsval  26625  ecgrtg  27254  esumpcvgval  31946  esumcvg  31954  eulerpartlemsv1  32223  signsplypnf  32429  signsvvfval  32457  vtsval  32517  circlemeth  32520  fwddifnval  34392  knoppndvlem6  34624  binomcxplemnotnn0  41863  stoweidlem11  43442  stoweidlem26  43457  fourierdlem112  43649  fsumlesge0  43805  sge0sn  43807  sge0f1o  43810  sge0supre  43817  sge0resplit  43834  sge0reuz  43875  sge0reuzb  43876  aacllem  46391
  Copyright terms: Public domain W3C validator