![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version |
Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
Ref | Expression |
---|---|
sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sum 15633 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
2 | iotaex 6517 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
3 | 1, 2 | eqeltri 2830 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∨ wo 846 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∃wrex 3071 Vcvv 3475 ⦋csb 3894 ⊆ wss 3949 ifcif 4529 class class class wbr 5149 ↦ cmpt 5232 ℩cio 6494 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7409 0cc0 11110 1c1 11111 + caddc 11113 ℕcn 12212 ℤcz 12558 ℤ≥cuz 12822 ...cfz 13484 seqcseq 13966 ⇝ cli 15428 Σcsu 15632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-sn 4630 df-pr 4632 df-uni 4910 df-iota 6496 df-sum 15633 |
This theorem is referenced by: fsumrlim 15757 fsumo1 15758 efval 16023 efcvgfsum 16029 eftlub 16052 bitsinv2 16384 bitsinv 16389 lebnumlem3 24479 isi1f 25191 itg1val 25200 itg1climres 25232 itgex 25288 itgfsum 25344 dvmptfsum 25492 plyeq0lem 25724 plyaddlem1 25727 plymullem1 25728 coeeulem 25738 coeid2 25753 plyco 25755 coemullem 25764 coemul 25766 aareccl 25839 aaliou3lem5 25860 aaliou3lem6 25861 aaliou3lem7 25862 taylpval 25879 psercn 25938 pserdvlem2 25940 pserdv 25941 abelthlem6 25948 abelthlem8 25951 abelthlem9 25952 logtayl 26168 leibpi 26447 basellem3 26587 chtval 26614 chpval 26626 sgmval 26646 muinv 26697 dchrvmasumlem1 26998 dchrisum0fval 27008 dchrisum0fno1 27014 dchrisum0lem3 27022 dchrisum0 27023 mulogsum 27035 logsqvma2 27046 selberglem1 27048 pntsval 27075 ecgrtg 28241 esumpcvgval 33076 esumcvg 33084 eulerpartlemsv1 33355 signsplypnf 33561 signsvvfval 33589 vtsval 33649 circlemeth 33652 fwddifnval 35135 knoppndvlem6 35393 binomcxplemnotnn0 43115 stoweidlem11 44727 stoweidlem26 44742 fourierdlem112 44934 fsumlesge0 45093 sge0sn 45095 sge0f1o 45098 sge0supre 45105 sge0resplit 45122 sge0reuz 45163 sge0reuzb 45164 aacllem 47848 |
Copyright terms: Public domain | W3C validator |