MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumex Structured version   Visualization version   GIF version

Theorem sumex 15702
Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
sumex Σ𝑘𝐴 𝐵 ∈ V

Proof of Theorem sumex
Dummy variables 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 15701 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 iotaex 6503 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) ∈ V
31, 2eqeltri 2830 1 Σ𝑘𝐴 𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2108  wrex 3060  Vcvv 3459  csb 3874  wss 3926  ifcif 4500   class class class wbr 5119  cmpt 5201  cio 6481  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  0cc0 11127  1c1 11128   + caddc 11130  cn 12238  cz 12586  cuz 12850  ...cfz 13522  seqcseq 14017  cli 15498  Σcsu 15700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-sn 4602  df-pr 4604  df-uni 4884  df-iota 6483  df-sum 15701
This theorem is referenced by:  fsumrlim  15825  fsumo1  15826  efval  16093  efcvgfsum  16100  eftlub  16125  bitsinv2  16460  bitsinv  16465  lebnumlem3  24911  isi1f  25625  itg1val  25634  itg1climres  25665  itgex  25721  itgfsum  25778  dvmptfsum  25929  plyeq0lem  26165  plyaddlem1  26168  plymullem1  26169  coeeulem  26179  coeid2  26194  plyco  26196  coemullem  26205  coemul  26207  aareccl  26284  aaliou3lem5  26305  aaliou3lem6  26306  aaliou3lem7  26307  taylpval  26324  psercn  26386  pserdvlem2  26388  pserdv  26389  abelthlem6  26396  abelthlem8  26399  abelthlem9  26400  logtayl  26619  leibpi  26902  basellem3  27043  chtval  27070  chpval  27082  sgmval  27102  muinv  27153  dchrvmasumlem1  27456  dchrisum0fval  27466  dchrisum0fno1  27472  dchrisum0lem3  27480  dchrisum0  27481  mulogsum  27493  logsqvma2  27504  selberglem1  27506  pntsval  27533  ecgrtg  28908  esumpcvgval  34055  esumcvg  34063  eulerpartlemsv1  34334  signsplypnf  34528  signsvvfval  34556  vtsval  34615  circlemeth  34618  fwddifnval  36127  knoppndvlem6  36481  binomcxplemnotnn0  44328  stoweidlem11  45988  stoweidlem26  46003  fourierdlem112  46195  fsumlesge0  46354  sge0sn  46356  sge0f1o  46359  sge0supre  46366  sge0resplit  46383  sge0reuz  46424  sge0reuzb  46425  aacllem  49613
  Copyright terms: Public domain W3C validator