MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumex Structured version   Visualization version   GIF version

Theorem sumex 15397
Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
sumex Σ𝑘𝐴 𝐵 ∈ V

Proof of Theorem sumex
Dummy variables 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 15396 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 iotaex 6412 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) ∈ V
31, 2eqeltri 2837 1 Σ𝑘𝐴 𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 396  wo 844   = wceq 1542  wex 1786  wcel 2110  wrex 3067  Vcvv 3431  csb 3837  wss 3892  ifcif 4465   class class class wbr 5079  cmpt 5162  cio 6388  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7271  0cc0 10872  1c1 10873   + caddc 10875  cn 11973  cz 12319  cuz 12581  ...cfz 13238  seqcseq 13719  cli 15191  Σcsu 15395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-nul 5234
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-sn 4568  df-pr 4570  df-uni 4846  df-iota 6390  df-sum 15396
This theorem is referenced by:  fsumrlim  15521  fsumo1  15522  efval  15787  efcvgfsum  15793  eftlub  15816  bitsinv2  16148  bitsinv  16153  lebnumlem3  24124  isi1f  24836  itg1val  24845  itg1climres  24877  itgex  24933  itgfsum  24989  dvmptfsum  25137  plyeq0lem  25369  plyaddlem1  25372  plymullem1  25373  coeeulem  25383  coeid2  25398  plyco  25400  coemullem  25409  coemul  25411  aareccl  25484  aaliou3lem5  25505  aaliou3lem6  25506  aaliou3lem7  25507  taylpval  25524  psercn  25583  pserdvlem2  25585  pserdv  25586  abelthlem6  25593  abelthlem8  25596  abelthlem9  25597  logtayl  25813  leibpi  26090  basellem3  26230  chtval  26257  chpval  26269  sgmval  26289  muinv  26340  dchrvmasumlem1  26641  dchrisum0fval  26651  dchrisum0fno1  26657  dchrisum0lem3  26665  dchrisum0  26666  mulogsum  26678  logsqvma2  26689  selberglem1  26691  pntsval  26718  ecgrtg  27349  esumpcvgval  32042  esumcvg  32050  eulerpartlemsv1  32319  signsplypnf  32525  signsvvfval  32553  vtsval  32613  circlemeth  32616  fwddifnval  34461  knoppndvlem6  34693  binomcxplemnotnn0  41944  stoweidlem11  43523  stoweidlem26  43538  fourierdlem112  43730  fsumlesge0  43886  sge0sn  43888  sge0f1o  43891  sge0supre  43898  sge0resplit  43915  sge0reuz  43956  sge0reuzb  43957  aacllem  46474
  Copyright terms: Public domain W3C validator