MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumex Structured version   Visualization version   GIF version

Theorem sumex 15399
Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
sumex Σ𝑘𝐴 𝐵 ∈ V

Proof of Theorem sumex
Dummy variables 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 15398 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 iotaex 6413 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) ∈ V
31, 2eqeltri 2835 1 Σ𝑘𝐴 𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 396  wo 844   = wceq 1539  wex 1782  wcel 2106  wrex 3065  Vcvv 3432  csb 3832  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  cio 6389  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  cn 11973  cz 12319  cuz 12582  ...cfz 13239  seqcseq 13721  cli 15193  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-uni 4840  df-iota 6391  df-sum 15398
This theorem is referenced by:  fsumrlim  15523  fsumo1  15524  efval  15789  efcvgfsum  15795  eftlub  15818  bitsinv2  16150  bitsinv  16155  lebnumlem3  24126  isi1f  24838  itg1val  24847  itg1climres  24879  itgex  24935  itgfsum  24991  dvmptfsum  25139  plyeq0lem  25371  plyaddlem1  25374  plymullem1  25375  coeeulem  25385  coeid2  25400  plyco  25402  coemullem  25411  coemul  25413  aareccl  25486  aaliou3lem5  25507  aaliou3lem6  25508  aaliou3lem7  25509  taylpval  25526  psercn  25585  pserdvlem2  25587  pserdv  25588  abelthlem6  25595  abelthlem8  25598  abelthlem9  25599  logtayl  25815  leibpi  26092  basellem3  26232  chtval  26259  chpval  26271  sgmval  26291  muinv  26342  dchrvmasumlem1  26643  dchrisum0fval  26653  dchrisum0fno1  26659  dchrisum0lem3  26667  dchrisum0  26668  mulogsum  26680  logsqvma2  26691  selberglem1  26693  pntsval  26720  ecgrtg  27351  esumpcvgval  32046  esumcvg  32054  eulerpartlemsv1  32323  signsplypnf  32529  signsvvfval  32557  vtsval  32617  circlemeth  32620  fwddifnval  34465  knoppndvlem6  34697  binomcxplemnotnn0  41974  stoweidlem11  43552  stoweidlem26  43567  fourierdlem112  43759  fsumlesge0  43915  sge0sn  43917  sge0f1o  43920  sge0supre  43927  sge0resplit  43944  sge0reuz  43985  sge0reuzb  43986  aacllem  46505
  Copyright terms: Public domain W3C validator