![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version |
Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
Ref | Expression |
---|---|
sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sum 15640 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
2 | iotaex 6516 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
3 | 1, 2 | eqeltri 2828 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ wo 844 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∃wrex 3069 Vcvv 3473 ⦋csb 3893 ⊆ wss 3948 ifcif 4528 class class class wbr 5148 ↦ cmpt 5231 ℩cio 6493 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7412 0cc0 11116 1c1 11117 + caddc 11119 ℕcn 12219 ℤcz 12565 ℤ≥cuz 12829 ...cfz 13491 seqcseq 13973 ⇝ cli 15435 Σcsu 15639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-sn 4629 df-pr 4631 df-uni 4909 df-iota 6495 df-sum 15640 |
This theorem is referenced by: fsumrlim 15764 fsumo1 15765 efval 16030 efcvgfsum 16036 eftlub 16059 bitsinv2 16391 bitsinv 16396 lebnumlem3 24809 isi1f 25523 itg1val 25532 itg1climres 25564 itgex 25620 itgfsum 25676 dvmptfsum 25827 plyeq0lem 26062 plyaddlem1 26065 plymullem1 26066 coeeulem 26076 coeid2 26091 plyco 26093 coemullem 26102 coemul 26104 aareccl 26178 aaliou3lem5 26199 aaliou3lem6 26200 aaliou3lem7 26201 taylpval 26218 psercn 26278 pserdvlem2 26280 pserdv 26281 abelthlem6 26288 abelthlem8 26291 abelthlem9 26292 logtayl 26508 leibpi 26788 basellem3 26928 chtval 26955 chpval 26967 sgmval 26987 muinv 27038 dchrvmasumlem1 27341 dchrisum0fval 27351 dchrisum0fno1 27357 dchrisum0lem3 27365 dchrisum0 27366 mulogsum 27378 logsqvma2 27389 selberglem1 27391 pntsval 27418 ecgrtg 28674 esumpcvgval 33540 esumcvg 33548 eulerpartlemsv1 33819 signsplypnf 34025 signsvvfval 34053 vtsval 34113 circlemeth 34116 fwddifnval 35605 knoppndvlem6 35857 binomcxplemnotnn0 43578 stoweidlem11 45186 stoweidlem26 45201 fourierdlem112 45393 fsumlesge0 45552 sge0sn 45554 sge0f1o 45557 sge0supre 45564 sge0resplit 45581 sge0reuz 45622 sge0reuzb 45623 aacllem 48010 |
Copyright terms: Public domain | W3C validator |