Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sumex | Structured version Visualization version GIF version |
Description: A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
Ref | Expression |
---|---|
sumex | ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sum 15396 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | |
2 | iotaex 6412 | . 2 ⊢ (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) ∈ V | |
3 | 1, 2 | eqeltri 2837 | 1 ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∨ wo 844 = wceq 1542 ∃wex 1786 ∈ wcel 2110 ∃wrex 3067 Vcvv 3431 ⦋csb 3837 ⊆ wss 3892 ifcif 4465 class class class wbr 5079 ↦ cmpt 5162 ℩cio 6388 –1-1-onto→wf1o 6431 ‘cfv 6432 (class class class)co 7271 0cc0 10872 1c1 10873 + caddc 10875 ℕcn 11973 ℤcz 12319 ℤ≥cuz 12581 ...cfz 13238 seqcseq 13719 ⇝ cli 15191 Σcsu 15395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-nul 5234 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-sn 4568 df-pr 4570 df-uni 4846 df-iota 6390 df-sum 15396 |
This theorem is referenced by: fsumrlim 15521 fsumo1 15522 efval 15787 efcvgfsum 15793 eftlub 15816 bitsinv2 16148 bitsinv 16153 lebnumlem3 24124 isi1f 24836 itg1val 24845 itg1climres 24877 itgex 24933 itgfsum 24989 dvmptfsum 25137 plyeq0lem 25369 plyaddlem1 25372 plymullem1 25373 coeeulem 25383 coeid2 25398 plyco 25400 coemullem 25409 coemul 25411 aareccl 25484 aaliou3lem5 25505 aaliou3lem6 25506 aaliou3lem7 25507 taylpval 25524 psercn 25583 pserdvlem2 25585 pserdv 25586 abelthlem6 25593 abelthlem8 25596 abelthlem9 25597 logtayl 25813 leibpi 26090 basellem3 26230 chtval 26257 chpval 26269 sgmval 26289 muinv 26340 dchrvmasumlem1 26641 dchrisum0fval 26651 dchrisum0fno1 26657 dchrisum0lem3 26665 dchrisum0 26666 mulogsum 26678 logsqvma2 26689 selberglem1 26691 pntsval 26718 ecgrtg 27349 esumpcvgval 32042 esumcvg 32050 eulerpartlemsv1 32319 signsplypnf 32525 signsvvfval 32553 vtsval 32613 circlemeth 32616 fwddifnval 34461 knoppndvlem6 34693 binomcxplemnotnn0 41944 stoweidlem11 43523 stoweidlem26 43538 fourierdlem112 43730 fsumlesge0 43886 sge0sn 43888 sge0f1o 43891 sge0supre 43898 sge0resplit 43915 sge0reuz 43956 sge0reuzb 43957 aacllem 46474 |
Copyright terms: Public domain | W3C validator |