MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summo Structured version   Visualization version   GIF version

Theorem summo 15659
Description: A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summo.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
Assertion
Ref Expression
summo (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))))
Distinct variable groups:   𝑓,𝑘,𝑚,𝑛,𝑥,𝐴   𝑓,𝐹,𝑘,𝑚,𝑛,𝑥   𝑘,𝐺,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛   𝐵,𝑓,𝑚,𝑛,𝑥   𝜑,𝑥,𝑓
Allowed substitution hints:   𝐵(𝑘)   𝐺(𝑓)

Proof of Theorem summo
Dummy variables 𝑔 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6888 . . . . . . . . . 10 (𝑚 = 𝑛 → (ℤ𝑚) = (ℤ𝑛))
21sseq2d 4013 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑛)))
3 seqeq1 13965 . . . . . . . . . 10 (𝑚 = 𝑛 → seq𝑚( + , 𝐹) = seq𝑛( + , 𝐹))
43breq1d 5157 . . . . . . . . 9 (𝑚 = 𝑛 → (seq𝑚( + , 𝐹) ⇝ 𝑦 ↔ seq𝑛( + , 𝐹) ⇝ 𝑦))
52, 4anbi12d 631 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)))
65cbvrexvw 3235 . . . . . . 7 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))
7 reeanv 3226 . . . . . . . . 9 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)))
8 simprlr 778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑚( + , 𝐹) ⇝ 𝑥)
9 summo.1 . . . . . . . . . . . . . 14 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
10 summo.2 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1110ad4ant14 750 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
12 simplrl 775 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑚 ∈ ℤ)
13 simplrr 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑛 ∈ ℤ)
14 simprll 777 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ𝑚))
15 simprrl 779 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ𝑛))
169, 11, 12, 13, 14, 15sumrb 15655 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑛( + , 𝐹) ⇝ 𝑥))
178, 16mpbid 231 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑥)
18 simprrr 780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑦)
19 climuni 15492 . . . . . . . . . . . 12 ((seq𝑛( + , 𝐹) ⇝ 𝑥 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)
2017, 18, 19syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑥 = 𝑦)
2120exp31 420 . . . . . . . . . 10 (𝜑 → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦)))
2221rexlimdvv 3210 . . . . . . . . 9 (𝜑 → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦))
237, 22biimtrrid 242 . . . . . . . 8 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦))
2423expdimp 453 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦))
256, 24biimtrid 241 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦))
26 summo.3 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
279, 10, 26summolem2 15658 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
2825, 27jaod 857 . . . . 5 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦))
299, 10, 26summolem2 15658 . . . . . . . 8 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑦 = 𝑥))
30 equcom 2021 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
3129, 30imbitrdi 250 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
3231impancom 452 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦))
33 oveq2 7413 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
3433f1oeq2d 6826 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑛)–1-1-onto𝐴))
35 fveq2 6888 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (seq1( + , 𝐺)‘𝑚) = (seq1( + , 𝐺)‘𝑛))
3635eqeq2d 2743 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑦 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑛)))
3734, 36anbi12d 631 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛))))
3837exbidv 1924 . . . . . . . . 9 (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛))))
39 f1oeq1 6818 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓:(1...𝑛)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴))
40 fveq1 6887 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓𝑛) = (𝑔𝑛))
4140csbeq1d 3896 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔(𝑓𝑛) / 𝑘𝐵 = (𝑔𝑛) / 𝑘𝐵)
4241mpteq2dv 5249 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))
4326, 42eqtrid 2784 . . . . . . . . . . . . . 14 (𝑓 = 𝑔𝐺 = (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))
4443seqeq3d 13970 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵)))
4544fveq1d 6890 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (seq1( + , 𝐺)‘𝑛) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))
4645eqeq2d 2743 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑦 = (seq1( + , 𝐺)‘𝑛) ↔ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛)))
4739, 46anbi12d 631 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))))
4847cbvexvw 2040 . . . . . . . . 9 (∃𝑓(𝑓:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛)))
4938, 48bitrdi 286 . . . . . . . 8 (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))))
5049cbvrexvw 3235 . . . . . . 7 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛)))
51 reeanv 3226 . . . . . . . . 9 (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))))
52 exdistrv 1959 . . . . . . . . . . 11 (∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))))
53 an4 654 . . . . . . . . . . . . 13 (((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) ↔ ((𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))))
5410ad4ant14 750 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
55 fveq2 6888 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
5655csbeq1d 3896 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵)
5756cbvmptv 5260 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵)
5826, 57eqtri 2760 . . . . . . . . . . . . . . . 16 𝐺 = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵)
59 fveq2 6888 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗 → (𝑔𝑛) = (𝑔𝑗))
6059csbeq1d 3896 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗(𝑔𝑛) / 𝑘𝐵 = (𝑔𝑗) / 𝑘𝐵)
6160cbvmptv 5260 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵)
62 simplr 767 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ))
63 simprl 769 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑓:(1...𝑚)–1-1-onto𝐴)
64 simprr 771 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → 𝑔:(1...𝑛)–1-1-onto𝐴)
659, 54, 58, 61, 62, 63, 64summolem3 15656 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))
66 eqeq12 2749 . . . . . . . . . . . . . . 15 ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛)) → (𝑥 = 𝑦 ↔ (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛)))
6765, 66syl5ibrcom 246 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛)) → 𝑥 = 𝑦))
6867expimpd 454 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto𝐴𝑔:(1...𝑛)–1-1-onto𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) → 𝑥 = 𝑦))
6953, 68biimtrid 241 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) → 𝑥 = 𝑦))
7069exlimdvv 1937 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (∃𝑓𝑔((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) → 𝑥 = 𝑦))
7152, 70biimtrrid 242 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) → 𝑥 = 𝑦))
7271rexlimdvva 3211 . . . . . . . . 9 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) → 𝑥 = 𝑦))
7351, 72biimtrrid 242 . . . . . . . 8 (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛))) → 𝑥 = 𝑦))
7473expdimp 453 . . . . . . 7 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto𝐴𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵))‘𝑛)) → 𝑥 = 𝑦))
7550, 74biimtrid 241 . . . . . 6 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
7632, 75jaod 857 . . . . 5 ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦))
7728, 76jaodan 956 . . . 4 ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦))
7877expimpd 454 . . 3 (𝜑 → (((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦))
7978alrimivv 1931 . 2 (𝜑 → ∀𝑥𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦))
80 breq2 5151 . . . . . 6 (𝑥 = 𝑦 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑚( + , 𝐹) ⇝ 𝑦))
8180anbi2d 629 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)))
8281rexbidv 3178 . . . 4 (𝑥 = 𝑦 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)))
83 eqeq1 2736 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑚)))
8483anbi2d 629 . . . . . 6 (𝑥 = 𝑦 → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))))
8584exbidv 1924 . . . . 5 (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))))
8685rexbidv 3178 . . . 4 (𝑥 = 𝑦 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚))))
8782, 86orbi12d 917 . . 3 (𝑥 = 𝑦 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))))
8887mo4 2560 . 2 (∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ ∀𝑥𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦))
8979, 88sylibr 233 1 (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  wal 1539   = wceq 1541  wex 1781  wcel 2106  ∃*wmo 2532  wrex 3070  csb 3892  wss 3947  ifcif 4527   class class class wbr 5147  cmpt 5230  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405  cc 11104  0cc0 11106  1c1 11107   + caddc 11109  cn 12208  cz 12554  cuz 12818  ...cfz 13480  seqcseq 13962  cli 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428
This theorem is referenced by:  fsum  15662
  Copyright terms: Public domain W3C validator