| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑛)) | 
| 2 | 1 | sseq2d 4015 | . . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑛))) | 
| 3 |  | seqeq1 14046 | . . . . . . . . . 10
⊢ (𝑚 = 𝑛 → seq𝑚( + , 𝐹) = seq𝑛( + , 𝐹)) | 
| 4 | 3 | breq1d 5152 | . . . . . . . . 9
⊢ (𝑚 = 𝑛 → (seq𝑚( + , 𝐹) ⇝ 𝑦 ↔ seq𝑛( + , 𝐹) ⇝ 𝑦)) | 
| 5 | 2, 4 | anbi12d 632 | . . . . . . . 8
⊢ (𝑚 = 𝑛 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) | 
| 6 | 5 | cbvrexvw 3237 | . . . . . . 7
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) | 
| 7 |  | reeanv 3228 | . . . . . . . . 9
⊢
(∃𝑚 ∈
ℤ ∃𝑛 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) | 
| 8 |  | simprlr 779 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑚( + , 𝐹) ⇝ 𝑥) | 
| 9 |  | summo.1 | . . . . . . . . . . . . . 14
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) | 
| 10 |  | summo.2 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 11 | 10 | ad4ant14 752 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 12 |  | simplrl 776 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑚 ∈ ℤ) | 
| 13 |  | simplrr 777 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑛 ∈ ℤ) | 
| 14 |  | simprll 778 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ≥‘𝑚)) | 
| 15 |  | simprrl 780 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ≥‘𝑛)) | 
| 16 | 9, 11, 12, 13, 14, 15 | sumrb 15750 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑛( + , 𝐹) ⇝ 𝑥)) | 
| 17 | 8, 16 | mpbid 232 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑥) | 
| 18 |  | simprrr 781 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑦) | 
| 19 |  | climuni 15589 | . . . . . . . . . . . 12
⊢
((seq𝑛( + , 𝐹) ⇝ 𝑥 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦) | 
| 20 | 17, 18, 19 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑥 = 𝑦) | 
| 21 | 20 | exp31 419 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦))) | 
| 22 | 21 | rexlimdvv 3211 | . . . . . . . . 9
⊢ (𝜑 → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦)) | 
| 23 | 7, 22 | biimtrrid 243 | . . . . . . . 8
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦)) | 
| 24 | 23 | expdimp 452 | . . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)) | 
| 25 | 6, 24 | biimtrid 242 | . . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)) | 
| 26 |  | summo.3 | . . . . . . 7
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) | 
| 27 | 9, 10, 26 | summolem2 15753 | . . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) | 
| 28 | 25, 27 | jaod 859 | . . . . 5
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦)) | 
| 29 | 9, 10, 26 | summolem2 15753 | . . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑦 = 𝑥)) | 
| 30 |  | equcom 2016 | . . . . . . . 8
⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | 
| 31 | 29, 30 | imbitrdi 251 | . . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) | 
| 32 | 31 | impancom 451 | . . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)) | 
| 33 |  | oveq2 7440 | . . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛)) | 
| 34 | 33 | f1oeq2d 6843 | . . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑛)–1-1-onto→𝐴)) | 
| 35 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (seq1( + , 𝐺)‘𝑚) = (seq1( + , 𝐺)‘𝑛)) | 
| 36 | 35 | eqeq2d 2747 | . . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑦 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑛))) | 
| 37 | 34, 36 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)))) | 
| 38 | 37 | exbidv 1920 | . . . . . . . . 9
⊢ (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)))) | 
| 39 |  | f1oeq1 6835 | . . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑓:(1...𝑛)–1-1-onto→𝐴 ↔ 𝑔:(1...𝑛)–1-1-onto→𝐴)) | 
| 40 |  | fveq1 6904 | . . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → (𝑓‘𝑛) = (𝑔‘𝑛)) | 
| 41 | 40 | csbeq1d 3902 | . . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑛) / 𝑘⦌𝐵) | 
| 42 | 41 | mpteq2dv 5243 | . . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) = (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵)) | 
| 43 | 26, 42 | eqtrid 2788 | . . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → 𝐺 = (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵)) | 
| 44 | 43 | seqeq3d 14051 | . . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))) | 
| 45 | 44 | fveq1d 6907 | . . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (seq1( + , 𝐺)‘𝑛) = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)) | 
| 46 | 45 | eqeq2d 2747 | . . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑦 = (seq1( + , 𝐺)‘𝑛) ↔ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) | 
| 47 | 39, 46 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)))) | 
| 48 | 47 | cbvexvw 2035 | . . . . . . . . 9
⊢
(∃𝑓(𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) | 
| 49 | 38, 48 | bitrdi 287 | . . . . . . . 8
⊢ (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)))) | 
| 50 | 49 | cbvrexvw 3237 | . . . . . . 7
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) | 
| 51 |  | reeanv 3228 | . . . . . . . . 9
⊢
(∃𝑚 ∈
ℕ ∃𝑛 ∈
ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)))) | 
| 52 |  | exdistrv 1954 | . . . . . . . . . . 11
⊢
(∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)))) | 
| 53 |  | an4 656 | . . . . . . . . . . . . 13
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) ↔ ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)))) | 
| 54 | 10 | ad4ant14 752 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 55 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑗 → (𝑓‘𝑛) = (𝑓‘𝑗)) | 
| 56 | 55 | csbeq1d 3902 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑗 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) | 
| 57 | 56 | cbvmptv 5254 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵) = (𝑗 ∈ ℕ ↦ ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) | 
| 58 | 26, 57 | eqtri 2764 | . . . . . . . . . . . . . . . 16
⊢ 𝐺 = (𝑗 ∈ ℕ ↦ ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) | 
| 59 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑗 → (𝑔‘𝑛) = (𝑔‘𝑗)) | 
| 60 | 59 | csbeq1d 3902 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → ⦋(𝑔‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑗) / 𝑘⦌𝐵) | 
| 61 | 60 | cbvmptv 5254 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑔‘𝑛) / 𝑘⦌𝐵) = (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵) | 
| 62 |  | simplr 768 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) | 
| 63 |  | simprl 770 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑓:(1...𝑚)–1-1-onto→𝐴) | 
| 64 |  | simprr 772 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑔:(1...𝑛)–1-1-onto→𝐴) | 
| 65 | 9, 54, 58, 61, 62, 63, 64 | summolem3 15751 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)) | 
| 66 |  | eqeq12 2753 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)) → (𝑥 = 𝑦 ↔ (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) | 
| 67 | 65, 66 | syl5ibrcom 247 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)) → 𝑥 = 𝑦)) | 
| 68 | 67 | expimpd 453 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) → 𝑥 = 𝑦)) | 
| 69 | 53, 68 | biimtrid 242 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) → 𝑥 = 𝑦)) | 
| 70 | 69 | exlimdvv 1933 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) → 𝑥 = 𝑦)) | 
| 71 | 52, 70 | biimtrrid 243 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) → 𝑥 = 𝑦)) | 
| 72 | 71 | rexlimdvva 3212 | . . . . . . . . 9
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) → 𝑥 = 𝑦)) | 
| 73 | 51, 72 | biimtrrid 243 | . . . . . . . 8
⊢ (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) → 𝑥 = 𝑦)) | 
| 74 | 73 | expdimp 452 | . . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)) → 𝑥 = 𝑦)) | 
| 75 | 50, 74 | biimtrid 242 | . . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) | 
| 76 | 32, 75 | jaod 859 | . . . . 5
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦)) | 
| 77 | 28, 76 | jaodan 959 | . . . 4
⊢ ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦)) | 
| 78 | 77 | expimpd 453 | . . 3
⊢ (𝜑 → (((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦)) | 
| 79 | 78 | alrimivv 1927 | . 2
⊢ (𝜑 → ∀𝑥∀𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦)) | 
| 80 |  | breq2 5146 | . . . . . 6
⊢ (𝑥 = 𝑦 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑚( + , 𝐹) ⇝ 𝑦)) | 
| 81 | 80 | anbi2d 630 | . . . . 5
⊢ (𝑥 = 𝑦 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦))) | 
| 82 | 81 | rexbidv 3178 | . . . 4
⊢ (𝑥 = 𝑦 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦))) | 
| 83 |  | eqeq1 2740 | . . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑚))) | 
| 84 | 83 | anbi2d 630 | . . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) | 
| 85 | 84 | exbidv 1920 | . . . . 5
⊢ (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) | 
| 86 | 85 | rexbidv 3178 | . . . 4
⊢ (𝑥 = 𝑦 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) | 
| 87 | 82, 86 | orbi12d 918 | . . 3
⊢ (𝑥 = 𝑦 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))))) | 
| 88 | 87 | mo4 2565 | . 2
⊢
(∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ ∀𝑥∀𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦)) | 
| 89 | 79, 88 | sylibr 234 | 1
⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)))) |