| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑛)) |
| 2 | 1 | sseq2d 3996 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑛))) |
| 3 | | seqeq1 14027 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → seq𝑚( + , 𝐹) = seq𝑛( + , 𝐹)) |
| 4 | 3 | breq1d 5134 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (seq𝑚( + , 𝐹) ⇝ 𝑦 ↔ seq𝑛( + , 𝐹) ⇝ 𝑦)) |
| 5 | 2, 4 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) |
| 6 | 5 | cbvrexvw 3225 |
. . . . . . 7
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ↔ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) |
| 7 | | reeanv 3217 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℤ ∃𝑛 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) |
| 8 | | simprlr 779 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑚( + , 𝐹) ⇝ 𝑥) |
| 9 | | summo.1 |
. . . . . . . . . . . . . 14
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
| 10 | | summo.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 11 | 10 | ad4ant14 752 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 12 | | simplrl 776 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑚 ∈ ℤ) |
| 13 | | simplrr 777 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑛 ∈ ℤ) |
| 14 | | simprll 778 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
| 15 | | simprrl 780 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝐴 ⊆ (ℤ≥‘𝑛)) |
| 16 | 9, 11, 12, 13, 14, 15 | sumrb 15734 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑛( + , 𝐹) ⇝ 𝑥)) |
| 17 | 8, 16 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑥) |
| 18 | | simprrr 781 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → seq𝑛( + , 𝐹) ⇝ 𝑦) |
| 19 | | climuni 15573 |
. . . . . . . . . . . 12
⊢
((seq𝑛( + , 𝐹) ⇝ 𝑥 ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦) |
| 20 | 17, 18, 19 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦))) → 𝑥 = 𝑦) |
| 21 | 20 | exp31 419 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦))) |
| 22 | 21 | rexlimdvv 3201 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦)) |
| 23 | 7, 22 | biimtrrid 243 |
. . . . . . . 8
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∧ ∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦)) → 𝑥 = 𝑦)) |
| 24 | 23 | expdimp 452 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑛 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑛) ∧ seq𝑛( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)) |
| 25 | 6, 24 | biimtrid 242 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)) |
| 26 | | summo.3 |
. . . . . . 7
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) |
| 27 | 9, 10, 26 | summolem2 15737 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| 28 | 25, 27 | jaod 859 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦)) |
| 29 | 9, 10, 26 | summolem2 15737 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑦 = 𝑥)) |
| 30 | | equcom 2018 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) |
| 31 | 29, 30 | imbitrdi 251 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| 32 | 31 | impancom 451 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) → 𝑥 = 𝑦)) |
| 33 | | oveq2 7418 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛)) |
| 34 | 33 | f1oeq2d 6819 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑛)–1-1-onto→𝐴)) |
| 35 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (seq1( + , 𝐺)‘𝑚) = (seq1( + , 𝐺)‘𝑛)) |
| 36 | 35 | eqeq2d 2747 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑦 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑛))) |
| 37 | 34, 36 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)))) |
| 38 | 37 | exbidv 1921 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)))) |
| 39 | | f1oeq1 6811 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑓:(1...𝑛)–1-1-onto→𝐴 ↔ 𝑔:(1...𝑛)–1-1-onto→𝐴)) |
| 40 | | fveq1 6880 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → (𝑓‘𝑛) = (𝑔‘𝑛)) |
| 41 | 40 | csbeq1d 3883 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑛) / 𝑘⦌𝐵) |
| 42 | 41 | mpteq2dv 5220 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) = (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵)) |
| 43 | 26, 42 | eqtrid 2783 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → 𝐺 = (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵)) |
| 44 | 43 | seqeq3d 14032 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))) |
| 45 | 44 | fveq1d 6883 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (seq1( + , 𝐺)‘𝑛) = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)) |
| 46 | 45 | eqeq2d 2747 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑦 = (seq1( + , 𝐺)‘𝑛) ↔ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) |
| 47 | 39, 46 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)))) |
| 48 | 47 | cbvexvw 2037 |
. . . . . . . . 9
⊢
(∃𝑓(𝑓:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑛)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) |
| 49 | 38, 48 | bitrdi 287 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)))) |
| 50 | 49 | cbvrexvw 3225 |
. . . . . . 7
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) |
| 51 | | reeanv 3217 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℕ ∃𝑛 ∈
ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) ↔ (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)))) |
| 52 | | exdistrv 1955 |
. . . . . . . . . . 11
⊢
(∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) ↔ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)))) |
| 53 | | an4 656 |
. . . . . . . . . . . . 13
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) ↔ ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)))) |
| 54 | 10 | ad4ant14 752 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 55 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑗 → (𝑓‘𝑛) = (𝑓‘𝑗)) |
| 56 | 55 | csbeq1d 3883 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑗 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) |
| 57 | 56 | cbvmptv 5230 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵) = (𝑗 ∈ ℕ ↦ ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) |
| 58 | 26, 57 | eqtri 2759 |
. . . . . . . . . . . . . . . 16
⊢ 𝐺 = (𝑗 ∈ ℕ ↦ ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) |
| 59 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑗 → (𝑔‘𝑛) = (𝑔‘𝑗)) |
| 60 | 59 | csbeq1d 3883 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → ⦋(𝑔‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑔‘𝑗) / 𝑘⦌𝐵) |
| 61 | 60 | cbvmptv 5230 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑔‘𝑛) / 𝑘⦌𝐵) = (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑘⦌𝐵) |
| 62 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) |
| 63 | | simprl 770 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
| 64 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → 𝑔:(1...𝑛)–1-1-onto→𝐴) |
| 65 | 9, 54, 58, 61, 62, 63, 64 | summolem3 15735 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)) |
| 66 | | eqeq12 2753 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)) → (𝑥 = 𝑦 ↔ (seq1( + , 𝐺)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) |
| 67 | 65, 66 | syl5ibrcom 247 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴)) → ((𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)) → 𝑥 = 𝑦)) |
| 68 | 67 | expimpd 453 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔:(1...𝑛)–1-1-onto→𝐴) ∧ (𝑥 = (seq1( + , 𝐺)‘𝑚) ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) → 𝑥 = 𝑦)) |
| 69 | 53, 68 | biimtrid 242 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) → 𝑥 = 𝑦)) |
| 70 | 69 | exlimdvv 1934 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (∃𝑓∃𝑔((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ (𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) → 𝑥 = 𝑦)) |
| 71 | 52, 70 | biimtrrid 243 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → ((∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) → 𝑥 = 𝑦)) |
| 72 | 71 | rexlimdvva 3202 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑛 ∈ ℕ (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) → 𝑥 = 𝑦)) |
| 73 | 51, 72 | biimtrrid 243 |
. . . . . . . 8
⊢ (𝜑 → ((∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ∧ ∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛))) → 𝑥 = 𝑦)) |
| 74 | 73 | expdimp 452 |
. . . . . . 7
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑛 ∈ ℕ ∃𝑔(𝑔:(1...𝑛)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵))‘𝑛)) → 𝑥 = 𝑦)) |
| 75 | 50, 74 | biimtrid 242 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| 76 | 32, 75 | jaod 859 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦)) |
| 77 | 28, 76 | jaodan 959 |
. . . 4
⊢ ((𝜑 ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))) → 𝑥 = 𝑦)) |
| 78 | 77 | expimpd 453 |
. . 3
⊢ (𝜑 → (((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦)) |
| 79 | 78 | alrimivv 1928 |
. 2
⊢ (𝜑 → ∀𝑥∀𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦)) |
| 80 | | breq2 5128 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑚( + , 𝐹) ⇝ 𝑦)) |
| 81 | 80 | anbi2d 630 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦))) |
| 82 | 81 | rexbidv 3165 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦))) |
| 83 | | eqeq1 2740 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 = (seq1( + , 𝐺)‘𝑚) ↔ 𝑦 = (seq1( + , 𝐺)‘𝑚))) |
| 84 | 83 | anbi2d 630 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) |
| 85 | 84 | exbidv 1921 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) |
| 86 | 85 | rexbidv 3165 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) |
| 87 | 82, 86 | orbi12d 918 |
. . 3
⊢ (𝑥 = 𝑦 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚))))) |
| 88 | 87 | mo4 2566 |
. 2
⊢
(∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ↔ ∀𝑥∀𝑦(((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑦) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)))) → 𝑥 = 𝑦)) |
| 89 | 79, 88 | sylibr 234 |
1
⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)))) |